6,913 research outputs found

    Improved Malware detection model with Apriori Association rule and particle swarm optimization

    Get PDF
    The incessant destruction and harmful tendency of malware on mobile devices has made malware detection an indispensable continuous field of research. Different matching/mismatching approaches have been adopted in the detection of malware which includes anomaly detection technique, misuse detection, or hybrid detection technique. In order to improve the detection rate of malicious application on the Android platform, a novel knowledge-based database discovery model that improves apriori association rule mining of a priori algorithm with Particle Swarm Optimization (PSO) is proposed. Particle swarm optimization (PSO) is used to optimize the random generation of candidate detectors and parameters associated with apriori algorithm (AA) for features selection. In this method, the candidate detectors generated by particle swarm optimization form rules using apriori association rule. These rule models are used together with extraction algorithm to classify and detect malicious android application. Using a number of rule detectors, the true positive rate of detecting malicious code is maximized, while the false positive rate of wrongful detection is minimized. The results of the experiments show that the proposed a priori association rule with Particle Swarm Optimization model has remarkable improvement over the existing contemporary detection models. © 2019 Olawale Surajudeen Adebayo and Normaziah Abdul Aziz

    Adaptive particle swarm optimization

    Get PDF
    An adaptive particle swarm optimization (APSO) that features better search efficiency than classical particle swarm optimization (PSO) is presented. More importantly, it can perform a global search over the entire search space with faster convergence speed. The APSO consists of two main steps. First, by evaluating the population distribution and particle fitness, a real-time evolutionary state estimation procedure is performed to identify one of the following four defined evolutionary states, including exploration, exploitation, convergence, and jumping out in each generation. It enables the automatic control of inertia weight, acceleration coefficients, and other algorithmic parameters at run time to improve the search efficiency and convergence speed. Then, an elitist learning strategy is performed when the evolutionary state is classified as convergence state. The strategy will act on the globally best particle to jump out of the likely local optima. The APSO has comprehensively been evaluated on 12 unimodal and multimodal benchmark functions. The effects of parameter adaptation and elitist learning will be studied. Results show that APSO substantially enhances the performance of the PSO paradigm in terms of convergence speed, global optimality, solution accuracy, and algorithm reliability. As APSO introduces two new parameters to the PSO paradigm only, it does not introduce an additional design or implementation complexity

    AMPSO: A new Particle Swarm Method for Nearest Neighborhood Classification

    Get PDF
    Nearest prototype methods can be quite successful on many pattern classification problems. In these methods, a collection of prototypes has to be found that accurately represents the input patterns. The classifier then assigns classes based on the nearest prototype in this collection. In this paper, we first use the standard particle swarm optimizer (PSO) algorithm to find those prototypes. Second, we present a new algorithm, called adaptive Michigan PSO (AMPSO) in order to reduce the dimension of the search space and provide more flexibility than the former in this application. AMPSO is based on a different approach to particle swarms as each particle in the swarm represents a single prototype in the solution. The swarm does not converge to a single solution; instead, each particle is a local classifier, and the whole swarm is taken as the solution to the problem. It uses modified PSO equations with both particle competition and cooperation and a dynamic neighborhood. As an additional feature, in AMPSO, the number of prototypes represented in the swarm is able to adapt to the problem, increasing as needed the number of prototypes and classes of the prototypes that make the solution to the problem. We compared the results of the standard PSO and AMPSO in several benchmark problems from the University of California, Irvine, data sets and find that AMPSO always found a better solution than the standard PSO. We also found that it was able to improve the results of the Nearest Neighbor classifiers, and it is also competitive with some of the algorithms most commonly used for classification.This work was supported by the Spanish founded research Project MSTAR::UC3M, Ref: TIN2008-06491-C04-03 and CAM Project CCG06-UC3M/ESP-0774.Publicad

    Application of Particle Swarm Optimization to Formative E-Assessment in Project Management

    Get PDF
    The current paper describes the application of Particle Swarm Optimization algorithm to the formative e-assessment problem in project management. The proposed approach resolves the issue of personalization, by taking into account, when selecting the item tests in an e-assessment, the following elements: the ability level of the user, the targeted difficulty of the test and the learning objectives, represented by project management concepts which have to be checked. The e-assessment tool in which the Particle Swarm Optimization algorithm is integrated is also presented. Experimental results and comparison with other algorithms used in item tests selection prove the suitability of the proposed approach to the formative e-assessment domain. The study is presented in the framework of other evolutionary and genetic algorithms applied in e-education.Particle Swarm Optimization, Genetic Algorithms, Evolutionary Algorithms, Formative E-assessment, E-education

    Metaheuristic design of feedforward neural networks: a review of two decades of research

    Get PDF
    Over the past two decades, the feedforward neural network (FNN) optimization has been a key interest among the researchers and practitioners of multiple disciplines. The FNN optimization is often viewed from the various perspectives: the optimization of weights, network architecture, activation nodes, learning parameters, learning environment, etc. Researchers adopted such different viewpoints mainly to improve the FNN's generalization ability. The gradient-descent algorithm such as backpropagation has been widely applied to optimize the FNNs. Its success is evident from the FNN's application to numerous real-world problems. However, due to the limitations of the gradient-based optimization methods, the metaheuristic algorithms including the evolutionary algorithms, swarm intelligence, etc., are still being widely explored by the researchers aiming to obtain generalized FNN for a given problem. This article attempts to summarize a broad spectrum of FNN optimization methodologies including conventional and metaheuristic approaches. This article also tries to connect various research directions emerged out of the FNN optimization practices, such as evolving neural network (NN), cooperative coevolution NN, complex-valued NN, deep learning, extreme learning machine, quantum NN, etc. Additionally, it provides interesting research challenges for future research to cope-up with the present information processing era

    Generating Interpretable Fuzzy Controllers using Particle Swarm Optimization and Genetic Programming

    Full text link
    Autonomously training interpretable control strategies, called policies, using pre-existing plant trajectory data is of great interest in industrial applications. Fuzzy controllers have been used in industry for decades as interpretable and efficient system controllers. In this study, we introduce a fuzzy genetic programming (GP) approach called fuzzy GP reinforcement learning (FGPRL) that can select the relevant state features, determine the size of the required fuzzy rule set, and automatically adjust all the controller parameters simultaneously. Each GP individual's fitness is computed using model-based batch reinforcement learning (RL), which first trains a model using available system samples and subsequently performs Monte Carlo rollouts to predict each policy candidate's performance. We compare FGPRL to an extended version of a related method called fuzzy particle swarm reinforcement learning (FPSRL), which uses swarm intelligence to tune the fuzzy policy parameters. Experiments using an industrial benchmark show that FGPRL is able to autonomously learn interpretable fuzzy policies with high control performance.Comment: Accepted at Genetic and Evolutionary Computation Conference 2018 (GECCO '18
    corecore