33,426 research outputs found

    Computing Bounds on Network Capacity Regions as a Polytope Reconstruction Problem

    Get PDF
    We define a notion of network capacity region of networks that generalizes the notion of network capacity defined by Cannons et al. and prove its notable properties such as closedness, boundedness and convexity when the finite field is fixed. We show that the network routing capacity region is a computable rational polytope and provide exact algorithms and approximation heuristics for computing the region. We define the semi-network linear coding capacity region, with respect to a fixed finite field, that inner bounds the corresponding network linear coding capacity region, show that it is a computable rational polytope, and provide exact algorithms and approximation heuristics. We show connections between computing these regions and a polytope reconstruction problem and some combinatorial optimization problems, such as the minimum cost directed Steiner tree problem. We provide an example to illustrate our results. The algorithms are not necessarily polynomial-time.Comment: Appeared in the 2011 IEEE International Symposium on Information Theory, 5 pages, 1 figur

    Memoryless Routing in Convex Subdivisions: Random Walks are Optimal

    Get PDF
    A memoryless routing algorithm is one in which the decision about the next edge on the route to a vertex t for a packet currently located at vertex v is made based only on the coordinates of v, t, and the neighbourhood, N(v), of v. The current paper explores the limitations of such algorithms by showing that, for any (randomized) memoryless routing algorithm A, there exists a convex subdivision on which A takes Omega(n^2) expected time to route a message between some pair of vertices. Since this lower bound is matched by a random walk, this result implies that the geometric information available in convex subdivisions is not helpful for this class of routing algorithms. The current paper also shows the existence of triangulations for which the Random-Compass algorithm proposed by Bose etal (2002,2004) requires 2^{\Omega(n)} time to route between some pair of vertices.Comment: 11 pages, 6 figure
    • …
    corecore