171,723 research outputs found
Jointly Optimal Routing and Caching for Arbitrary Network Topologies
We study a problem of fundamental importance to ICNs, namely, minimizing
routing costs by jointly optimizing caching and routing decisions over an
arbitrary network topology. We consider both source routing and hop-by-hop
routing settings. The respective offline problems are NP-hard. Nevertheless, we
show that there exist polynomial time approximation algorithms producing
solutions within a constant approximation from the optimal. We also produce
distributed, adaptive algorithms with the same approximation guarantees. We
simulate our adaptive algorithms over a broad array of different topologies.
Our algorithms reduce routing costs by several orders of magnitude compared to
prior art, including algorithms optimizing caching under fixed routing.Comment: This is the extended version of the paper "Jointly Optimal Routing
and Caching for Arbitrary Network Topologies", appearing in the 4th ACM
Conference on Information-Centric Networking (ICN 2017), Berlin, Sep. 26-28,
201
Routing on the Visibility Graph
We consider the problem of routing on a network in the presence of line
segment constraints (i.e., obstacles that edges in our network are not allowed
to cross). Let be a set of points in the plane and let be a set of
non-crossing line segments whose endpoints are in . We present two
deterministic 1-local -memory routing algorithms that are guaranteed to
find a path of at most linear size between any pair of vertices of the
\emph{visibility graph} of with respect to a set of constraints (i.e.,
the algorithms never look beyond the direct neighbours of the current location
and store only a constant amount of additional information). Contrary to {\em
all} existing deterministic local routing algorithms, our routing algorithms do
not route on a plane subgraph of the visibility graph. Additionally, we provide
lower bounds on the routing ratio of any deterministic local routing algorithm
on the visibility graph.Comment: An extended abstract of this paper appeared in the proceedings of the
28th International Symposium on Algorithms and Computation (ISAAC 2017).
Final version appeared in the Journal of Computational Geometr
NextBestOnce: Achieving Polylog Routing despite Non-greedy Embeddings
Social Overlays suffer from high message delivery delays due to insufficient
routing strategies. Limiting connections to device pairs that are owned by
individuals with a mutual trust relationship in real life, they form topologies
restricted to a subgraph of the social network of their users. While
centralized, highly successful social networking services entail a complete
privacy loss of their users, Social Overlays at higher performance represent an
ideal private and censorship-resistant communication substrate for the same
purpose.
Routing in such restricted topologies is facilitated by embedding the social
graph into a metric space. Decentralized routing algorithms have up to date
mainly been analyzed under the assumption of a perfect lattice structure.
However, currently deployed embedding algorithms for privacy-preserving Social
Overlays cannot achieve a sufficiently accurate embedding and hence
conventional routing algorithms fail. Developing Social Overlays with
acceptable performance hence requires better models and enhanced algorithms,
which guarantee convergence in the presence of local optima with regard to the
distance to the target.
We suggest a model for Social Overlays that includes inaccurate embeddings
and arbitrary degree distributions. We further propose NextBestOnce, a routing
algorithm that can achieve polylog routing length despite local optima. We
provide analytical bounds on the performance of NextBestOnce assuming a
scale-free degree distribution, and furthermore show that its performance can
be improved by more than a constant factor when including Neighbor-of-Neighbor
information in the routing decisions.Comment: 23 pages, 2 figure
Self-Correcting Broadcast in Distributed Hash Tables
We present two broadcast algorithms that can be used on top of distributed hash tables (DHTs) to perform group communication and arbitrary queries. Unlike other P2P group communication mechanisms, which either embed extra information in the DHTs or use random overlay networks, our algorithms take advantage of the structured DHT overlay networks without maintaining additional information. The proposed algorithms do not send any redundant messages. Furthermore the two algorithms ensure 100% coverage of the nodes in the system even when routing information is outdated as a result of dynamism in the network. The first algorithm performs some correction of outdated routing table entries with a low cost of correction traffic. The second algorithm exploits the nature of the broadcasts to extensively update erroneous routing information at the cost of higher correction traffic. The algorithms are validated and evaluated in our stochastic distributed-algorithms simulator
An Efficient Approach for Generalized Load Balancing in Multipath Packet Switched Networks
This paper is a quantitative analysis on packet switched network with a view
to generalize load balancing and determination of appropriate routing algorithm
in multipath environment. Several routing algorithms have been introduced for
routing of packets from source to destination. Some of them route packets
accurately with increased workload and some of them drastically cut down the
workload. A few of them can find out a minimum workload deviation for both UDP
and TCP packets. We simulated these approaches in a well defined simulator,
analyzed and evaluated their performance. After expanding our analysis with
varying weights and number of paths we found that the recently proposed routing
algorithm Mixed Weighted Fair Routing (MWFR) outperforms the existing routing
algorithms by reducing the routing and network overhead and saving the scarce
bandwidth as well as CPU consumption for packet switching networks.Comment: 12 Pages, IJCNC Journal 201
On the performance of routing algorithms in wormhole-switched multicomputer networks
This paper presents a comparative performance study of adaptive and deterministic routing algorithms in wormhole-switched hypercubes and investigates the performance vicissitudes of these routing schemes under a variety of network operating conditions. Despite the previously reported results, our results show that the adaptive routing does not consistently outperform the deterministic routing even for high dimensional networks. In fact, it appears that the superiority of adaptive routing is highly dependent to the broadcast traffic rate generated at each node and it begins to deteriorate by growing the broadcast rate of generated message
- …
