
Self-Correcting Broadcast in Distributed Hash Tables ∗

Ali Ghodsi1,Luc Onana Alima1, Sameh El-Ansary2, Per Brand2 and Seif Haridi1
1IMIT-Royal Institute of Technology, Kista, Sweden

2Swedish Institute of Computer Science, Kista, Sweden
{aligh, onana, seif}@it.kth.se, {sameh, perbrand}@sics.se

ABSTRACT
We present two broadcast algorithms that can be used on
top of distributed hash tables (DHTs) to perform group
communication and arbitrary queries. Unlike other P2P
group communication mechanisms, which either embed
extra information in the DHTs or use random overlay net-
works, our algorithms take advantage of the structured
DHT overlay networks without maintaining additional in-
formation. The proposed algorithms do not send any re-
dundant messages. Furthermore the two algorithms en-
sure 100% coverage of the nodes in the system even when
routing information is outdated as a result of dynamism in
the network. The first algorithm performs some correction
of outdated routing table entries with a low cost of cor-
rection traffic. The second algorithm exploits the nature
of the broadcasts to extensively update erroneous routing
information at the cost of higher correction traffic. The
algorithms are validated and evaluated in our stochastic
distributed-algorithms simulator.

KEY WORDS
Distributed Algorithms, Distributed Hash Tables, Group
Communication, Peer-to-Peer .

1 Introduction

The need for making effective use of the huge amount of
computing resources attached to large scale networks, such
as the Internet, has established a new field within the dis-
tributed computing area, namely, Peer-to-Peer (P2P) com-
puting.

The current trend in this new field builds on the idea of
distributed hash tables (DHT) that provide infrastructures
for scalable P2P systems [11, 13, 1, 7]. The infrastructure is
a logical network, called an overlay network, within which
key/value pairs are stored. The main operation offered by
DHT-based overlay networks is the lookup operation, that
is finding a value associated with a given key. However, the
lookup operation itself is not enough to perform arbitrary
queries such as context dependent searches. Furthermore,
it is difficult, in large DHT systems, to collect statistical
information about the system, such as the overall system
usage for billing purposes.

∗This work was partially funded by the Information Society Tech-
nologies programme of the European Commission, Future and Emerging
Technologies under the IST-2001-33234 PEPITO project and partially by
the Vinnova PPC project in Sweden

In this paper we present two broadcast algorithms for
the distributed k-ary system (DKS) [1] that can be used to
solve the above mentioned problems. The choice of DKS
is motivated by two reasons. First, the DKS systems, in
contrast to all other systems [9, 13, 5], avoid the use of
periodic stabilization protocols for maintaining routing in-
formation. Instead, a novel technique called correction-on-
use serves to correct outdated routing information on-the-
fly. Network bandwidth is thus saved during periods when
activity is low. Second, DKS provides the ability to tune
the ratio between routing table size and maximum lookup
length. E.g. a system can be configured with large routing
tables and a low maximum lookup length, consequently,
making broadcasts faster.

1.1 Contribution

The work in [3] paved the way for doing broadcasts on top
of structured P2P networks such as the Chord system [11,
12]. However, the algorithm in [3] fails to cover all nodes
when the routing information is inconsistent, which is the
natural case in dynamic P2P networks as a consequence of
nodes joining or leaving.

In this paper we present two broadcast algorithms that
deal with routing table inconsistencies. The new broadcast
algorithms guarantee 100% coverage even in the presence
of frequent network changes and outdated routing informa-
tion. Furthermore, unlike other similar attempts[8], nodes
do not receive any redundant messages.

Furthermore, we extend the DKS philosophy of
avoiding the use of periodic stabilization. The second
broadcast algorithm exploits the nature of a broadcast to
effectively correct outdated routing information at the cost
of extra local computation and network traffic.

The proposed algorithms can be used to perform mul-
ticast. Each multicast group is then represented by an in-
stance of DKS within which the proposed broadcast algo-
rithms can be used to disseminate multicast messages.

1.2 Related work

Our work can be classified as extending DHTs to support
arbitrary-searches. From that perspective, the research in
complex queries shares the same goal. In [4] the idea is
to construct search indices that enable the performance of
database-like queries. This approach differs from ours in
that we do not add extra indexing to the DHT. The analysis
of the cost of construction, maintenance, and performing

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Swedish Institute of Computer Science Publications Database

https://core.ac.uk/display/11433349?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

database-like join operations is not available at the time of
writing of this paper.

Since broadcast is a special case of multicast, a mul-
ticast solution developed for a DHT such as [10, 8, 2]
can provide broadcast functionality. Nevertheless, a mul-
ticast solution would require the additional maintenance of
a multicast group which, in the case of broadcast, is a large
group containing all the nodes in the network. For exam-
ple [2] uses one rendez-vous node per group, that dissem-
inates messages with the help of potential non-members
called forwarders by using multicast trees. In [8], a boot-
strap node stores information about a group, in which it is
not necessarily a member. Additionally, there is a inherent
redundancy of messages when the coordinate space is not
perfectly partitioned. In our approach, these two drawbacks
are avoided.

1.3 Outline

The remaining of this paper is organized as follows. In
section 2 we give an overview of DKS systems. Section 3
provides informal and formal descriptions of the proposed
algorithms. Section 4 is devoted to the validation and the
evaluation of the two algorithms. Finally, section 5 con-
cludes.

2 DKS overview

In the following sub-sections we present the DKS systems.
We focus on its two main contributions, a generalization to
tune the lookup length, and a correction-on-use technique
used to avoid periodic stabilization protocols for maintain-
ing routing information.

2.1 Structure of the DKS

DKS systems are configured with the parameters, N , and
k≥2, such that the lookup length is guaranteed to take at
most logk(N) hops for a network of maximum size N .
With k defined, the maximum number of nodes that can be
simultaneously in a DKS network is chosen to be N = kL

for some large L. Every node knows k and N , and can
therefore compute L.

Once N has been defined, all nodes and keys in the
system are deterministically mapped onto the identifier
space, I= {0, 1, .., N−1}, by using a globally known hash
function, H . The identifier space is a circular space modulo
N .

Each key/value pair is physically stored at the first
node encountered in the ring, moving in clockwise direc-
tion, starting at H(key).

We shall use the notation a⊕b for (a + b) modulo
N for all a, b∈I. The whole identifier space can be rep-
resented by an interval of the form [x, x[or]x, x] for an
arbitrary x ∈ I. For any x ∈ I, we note that [x, x] = {x}
and]x, x[= I\{x}.

2.2 Routing tables

Each node, in addition to storing key/value pairs, maintains
a routing table. The routing table consists of logk(N) lev-
els. Let L = {1, 2, .., logk(N)} be the set of levels.

At each level, l ∈ L, a node n has a view of the iden-
tifier space defined as:

Vl = [n, n ⊕
N

kl−1
[

This means that for level one, the view consists of the
whole identifier space, and at any other level l > 1, one
k:th of Vl−1 is considered.

At any level l∈L, the view is partitioned into k

equally-sized intervals denoted I l
i for 0≤i≤k − 1. At a

node n, I l
i is defined as:

I l
i = [n ⊕ i

N

kl
, n ⊕ (i + 1)

N

kl
[, i∈{0, 1, .., k − 1}, l∈L

Each node, n, maintains a responsible node for every
interval in its routing table. For any level, l∈L the responsi-
ble for interval I l

0
is always n itself. 1 For all other intervals

j∈{1, 2, .., k − 1}, the responsible for interval I l
j is chosen

to be the first node encountered, moving in clockwise di-
rection, starting at the beginning of the interval. We shall
use the function R(I) to denote the id of the responsible
node for interval I .

In addition to storing a routing table, each node, n,
maintains a predecessor pointer, that is the first node en-
countered, moving in counter-clockwise direction, starting
at n.

An important property of a DKS system is that when
a node n joins or leaves the system, only n’s predecessor
and successor are explicitly updated in a fault-free context.
The rest of the nodes in the system will find out about n

existence or departure by the correction-on-use technique
described in section 2.4.

Figure 1 shows an example of a DKS network from
one node’s point of view. Note that in figure 1 we have
mapped the modulo N circle onto a line from node 21’s
view.

2.3 Lookups

To initiate a search for a key identifier id at a node n the
distributed lookup is performed as follows. If id is between
n’s predecessor and n, the key/value pair is stored at n itself
and can be resolved locally at n.

Otherwise, n searches its routing table at level l = 1,
for an interval I l

i in Vl such that id∈I l
i , for 0≤i≤k − 1.

The lookup request is thereafter forwarded to the responsi-
ble node for interval I l

i with the parameters l and i piggy-
backed.

A node n′ upon receipt of the forwarded request
checks if the key identifier id is between its predecessor
and itself. If so, then n′ returns the value associated with id

to n. Otherwise, it searches its routing table at level l + 1
for an interval that contains id. Then a lookup request is
forwarded to the responsible for that interval. The current
level and interval are again piggybacked in the forwarded
request. This process repeats until the node storing the key

1The responsible node’s identifier and network address is stored such
that communication can be established with it.

Figure 1: a) A DKS network with k = 4 and N = 64, with the nodes 21, 24, 27, 48, 57, and 63 present. The figure shows node
21’s views, V1, V2 and V3, and how each view is partitioned into k = 4 equally sized intervals. The dark nodes represent the
responsible nodes from node 21’s view. b) Node 21’s routing table showing each interval and its responsible node.

Figure 2: A node with identifier 26 joins the network de-
picted in figure 1. As node 21 is not the predecessor of node
26, it will not immediately be informed about node 26’s
existence. Hence it will continue to, erroneously, consider
node 27 as responsible for I2

1
. If node 21 sends a lookup

message to node 27, node 21 will find out about node 26’s
existence by correction-on-use. Alternatively, node 21 will
become aware of node 26’s existence if node 26 sends a
lookup message to node 21.

id is found, in which case the value associated with id is
recursively sent back to n.

2.4 Correction-on-use

In a DKS network, routing information can become out-
dated as a result of joining or leaving nodes. Figure 2 shows
how routing entries become outdated as a result of a join
operation. The outdated routing entries are corrected only
when they are used. As long as the ratio of lookups to
joins, leaves, and failures is high, the routing information
are eventually corrected. This is the essential assumption
in DKS, which is validated in [1].

Correction-on-use is based on two ideas. The first
idea is to embed the level, l, and the interval, i, parameters
with every lookup or insertion message. A node n receiv-
ing a lookup or insertion message from a node n′ can then
calculate the start of the interval, I l

i at node n′, for which n

is responsible according to the node n′. If n’s predecessor
is in the interval [n′⊕iN

kl , n[, then node n notifies the node
n′ of the existence of n’s predecessor. Node n′ can then

update its erroneous routing entry.
The second idea is that a message sent by a node p

to another node n is an indication that p exists and is thus
part of the DKS network. Hence, node n examines all of its
intervals to determine if p should be responsible for any of
the intervals, in which case routing information is updated.

3 The broadcast algorithms

3.1 Desired properties

The broadcast algorithms should have the following desir-
able properties:

• Coverage. All the nodes present in the system, at the
time a broadcast operation starts, receive the broadcast
message as long as they remain in the system.

• Redundancy. Any node that receives a broad-
cast message receives it once, disregarding messages
sent trough erroneous pointers as they will trigger
correction-on-use.

• Correction of routing information. The broadcast al-
gorithms should contribute to the correction of out-
dated routing information.

3.2 Informal description

The basic principle of the two broadcast algorithms is as
follows. A node starting the broadcast iterates through all
levels in L starting at the first level. At each level, the node
moves in counter-clockwise direction through all of its in-
tervals, broadcasting a message to each responsible node.
Each broadcast message, sent by a node n, carries with
it the parameters l, i and limit. The message’s purpose is
twofold. First, it delivers the intended data to the receiv-
ing node. Second, it serves as a request to a receiving node

R11 :: receive(u, n, BCASTREQUEST(data))
send(n : n : BCAST(data, 1, 0, n)

R21 :: receive(n′, n, BCAST(data, l, i, limit))
if n′⊕i N

kl
∈]predecessor, n] then

%% Deliver the message to the application layer
for λ := 1 to logk(N) do

for τ := k − 1 downto 1 do
if R(Iλ

τ) ∈]n, limit[then
send(n, R(Iλ

τ), BCAST(data, λ, τ, limit))
limit := n⊕τ N

kλ

fi
od

od
else

send(n, n′, BADPOINTER(BCAST(data, l, i, limit), predecessor))
fi

R31 :: receive(n′, n, BADPOINTER(BCAST(data, l, i, limit), candidate)
for λ := 1 to logk(N) do

for τ := k − 1 downto 1 do
if n⊕τ N

kλ
∈]n, candidate] and R(Iλ

τ)∈]candidate, n] then
R(Iλ

τ) = candidate

fi
od

od
send(n, candidate, BCAST(data, l, i, limit))

Figure 3: Algorithm 1

to cover all nodes in the interval]n ⊕ i ∗ N
kl , limit[. Each

node, receiving the broadcast message, repeats the men-
tioned process, but makes certain not to broadcast to a node
beyond the limit given to it.

To illustrate the principle of the proposed algorithms,
a fully populated DKS network with N = 16 and k = 4 is
considered. A broadcast initiated at node 0 proceeds level
by level. Beginning at level one, node 0 sends a broadcast
message to node 12 giving it responsibility to cover the in-
terval]12, 0[. Thereafter it repeats the same procedure for
I1

2
giving node 8 responsibility for the interval]8, 12[. Af-

ter sending a broadcast to interval I1

1
the algorithm moves

to level two, repeating the process for the intervals I2

3
, I2

2
,

and I2

1
. Each of the responsible nodes receiving the mes-

sage from node 0 will repeat a similar process except they
will not go beyond the limits assigned to them. For ex-
ample node 12 will not send, at level one, to its intervals
I1

3
, I1

2
, I1

1
as they are beyond the given limit 0. Instead,

it will move to level two, sending a broadcast to the nodes
responsible for intervals I2

3
, I2

2
, and I2

1
.

3.3 Formal description

In both algorithms we assume a distributed system mod-
eled by a set of nodes communicating by message passing
through a communication network that is: (i) Connected,
(ii) Asynchronous, (iii) Reliable, and (iv) providing FIFO
communication.

A distributed algorithm running on a node of the sys-
tem is described using rules of the form:

R ::
receive(Sender, Receiver, MESSAGE(arg

1
, .., arg

n
))

Action

R22 :: receive(n′,n,BCAST(data, l, i, limit))
if n′⊕i N

kl
∈]predecessor, n] then

%% Deliver the message to the application layer
for λ := 1 to logk(N) do

for τ := k − 1 downto 1 do
if R(Iλ

τ) ∈]n, limit[then
(i′, l′) :=FINDLOWEST(n, R(Iλ

τ))
send(n, R(Iλ

τ), BCAST(data, i′, l′, limit))
limit := n⊕i′ N

kl′

fi
od

od
else

send(n,n′,BADPOINTER(BCAST(data, l, i, limit), predecessor))
fi

Subroutine :: FINDLOWEST(n′, r)
for λ := 1 to logk(N) do

for τ := k − 1 downto 1 do
if R(Iλ

τ) = r then
(l′, i′) := (λ, τ)

fi
od

od
return (l′, i′)

Figure 4: Algorithm 2. The rules R12 are R32 are the same
as rules R11 and R31 in figure 3.

The rule R describes the event of receiving a message
MESSAGE at the Receiver node and the action taken to han-
dle that event. A Sender of a message executes the state-
ment send(Sender, Receiver, MESSAGE(arg

1
, .., argn)) to

send a message to Receiver.

The first algorithm The first broadcast algorithm is
given by figure 3. Rule R11 describes the reaction of a DKS
node upon receipt of a BCASTREQUEST(data) from the appli-
cation layer. Rule R11 triggers rule R21 with the parame-
ters l = 1, k = 0, and limit set to the initiating node’s id,
giving the initiating node responsibility to cover all nodes
in the system.

When a broadcast is initiated, the algorithm proceeds
level by level. At each level, the node iterates all intervals
from k−1 down to 1 and sends a message to the responsible
node for each of the intervals. To avoid sending duplicate
messages to nodes responsible for several intervals, a mes-
sage is only sent when the id of the responsible node is not
beyond the end of the interval checked for.

Due to outdated routing table entries some intervals
might not seem to have any nodes even though they are
populated. The responsibility of covering those intervals is
delegated to the next interval in the iteration. This is done
by not changing the limit parameter when an interval seem
to be unpopulated.

Improving the correction of the routing information
In order to improve the correction of outdated routing infor-
mation, we extend Algorithm 1 with self-correction. The
idea consists of extending the responsibility assigned to a

Figure 5: Experiment 1: a) Shows the distance from the optimal network b) Shows the percentage of correction messages

node n′, by a node n, to cover other preceeding intervals
that n′ is responsible for according to n. Hence, if other
nodes exist in n′’s preceeding intervals, which n is not
aware of, n′ will trigger correction-on-use and the rout-
ing information will be corrected at n. The subroutine
FINDLOWEST is used for this purpose.

The second broadcast algorithm is the same as the first
algorithm, except that rule R21 is replaced by rule R22 as
shown in figure 4.

4 Simulation Results

In this section we show preliminary simulation results for
the broadcast algorithms. We use the following four met-
rics for evaluation. Coverage, Redundancy, Correction
Cost and Distance from Optimal Network.

The Coverage and the Redundancy metrics are calcu-
lated by taking a snapshot of all the nodes present in the
overlay network at the initiation time of each broadcast.
The simulator then maintains a counter for each node re-
ceiving the broadcast message. The coverage is calculated
by counting the percentage of nodes in the snapshot that re-
ceived the broadcast message by the end of the simulation.
The redundancy is computed by counting the number of
covered nodes that received the message more than once.
Correction Cost is defined as the percentage of messages
used for correction of routing entries out of the total num-
ber of messages generated by a broadcast. Distance from
Optimal Network is the ratio of the number of erroneous
routing entries in all nodes to the total number of routing
entries in the system. When this ratio is equal to 0 the rout-
ing information is said to be optimal.

The experiments were conducted on a stochastic dis-
crete distributed-algorithms simulator developed by our
team and using the Mozart [6] programming platform. In
this paper we present the results of two experiments. The
purpose of the first experiment was to test the system in
a dynamic setting and evaluate the performance of our al-
gorithms using the mentioned metrics. The second exper-
iment focused on the convergence towards a minimal dis-

Figure 6: Experiment 2: Shows the convergence to a max-
imally optimal network while performing broadcasts with
algorithm 1, 2.

tance from the optimal network.
Experiment 1. A DKS network of size N =

212 was created. The population of nodes in the sys-
tem was considered a variable P that took values from
{500, 1000, 2000, 3000, 4000}. For each value of P , we
proceeded in two steps. First, we initialized the system with
10% of P . Second, 90% of P nodes joined while P broad-
casts were initiated. The experiment was repeated for the
values of k = 2, 4, 8. That is, with a high probability, each
node initiated one broadcast while the overlay network was
growing.

Experiment 2. A DKS network of size N = 212

was created. The system was initialized with 1500 nodes.
Thereafter an arbitrary number of broadcasts were initiated.
The experiment was repeated for the values of k = 2, 4, 8.

Results. In all our experiments, the Coverage and Re-
dundancy were 100% and 0 respectively as expected from
the design.

Distance from Optimal Network. Two observations
can be made from Figure 5 a). First, for all values of k,
Algorithm 2 corrects routing information more effectively
than Algorithm 1. Second, the final distance from the opti-
mal network is mainly affected by the search arity, k, and
not the population size. From Figure 6 we can see that al-
gorithm 2, in contrast to algorithm 1, effectively converges
to the optimal network for all search arities.

Correction Cost. As shown in Figure 5 b), the cor-
rection cost is in general higher for Algorithm 2. This was
expected as the correction requires some additional over-
head.

5 Conclusion

In this paper we presented two algorithms for broadcasting
on structured peer-to-peer networks. Our work was moti-
vated by two reasons. First, the need to extend distributed
hash tables to perform arbitrary queries and retrieval of
global statistical information about the DHTs. Second, to
provide robust algorithms that can be used for multicast-
ing within groups in the context of DKS overlay networks.
Each group is formed by creating a specific DKS instance
for it.

The proposed algorithms use the DKS philosophy of
avoiding periodic stabilization to maintain routing infor-
mation. The second algorithm extends the philosophy by
heavily correcting incorrect routing information.

In addition, the broadcast algorithms provide full cov-
erage even if nodes have erroneous routing information.
Furthermore, each broadcast message is received once even
if new nodes join while the broadcasts are taking place.

The proposed algorithms have been validated and
evaluated in a dynamic network through simulations and
the obtained results confirm our expectations. More pre-
cisely, Algorithm 1 gives less correction overhead and
larger distance from the optimal network compared to Al-
gorithm 2.

References

[1] L. O. Alima, S. El-Ansary, P. Brand, and S. Haridi.
DKS(N, k, f): A Family of Low Communication,
Scalable and Fault-Tolerant Infrastructures for P2P
Applications. In The 3rd International workshop on
Global and Peer-To-Peer Computing on large scale
distributed systems - CCGRID2003, Tokyo, Japan,
May 2003.

[2] M. Castro, P. Druschel, A-M. Kermarrec, and
A. Rowstron. SCRIBE: A large-scale and de-
centralised application-level multicast infrastructure.
IEEE Journal on Selected Areas in Communications
(JSAC) (Special issue on Network Support for Multi-
cast Communications, 2002.

[3] S. El-Ansary, L. O. Alima, P. Brand, and S. Haridi.
Efficient Broadcast in Structured P2P Netwoks. In
2nd International Workshop on Peer-to-Peer Systems
(IPTPS ’03), February 2003.

[4] M. Harren, J. M. Hellerstein, R. Huebsch, B. T Loo,
S. Shenker, and I. Stoica. Complex Queries in DHT-
based Peer-to-Peer Networks. In The 1st Interational
Workshop on Peer-to-Peer Systems (IPTPS’02), 2002.

[5] P. Maymounkov and D. Mazires. Kademlia: A Peer-
to-peer Information System Based on the XOR Met-
ric. In The 1st Interational Workshop on Peer-to-Peer
Systems (IPTPS’02), 2002.

[6] Mozart Consortium. http://www.mozart-oz.org,
2003.

[7] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A Scalable Content Addressable Net-
work. Technical Report TR-00-010, Berkeley, CA,
2000.

[8] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker.
Application-level Multicast using Content-
Addressable Networks. In Third International
Workshop on Networked Group Communication
(NGC ’01), 2001.

[9] A. Rowstron and P. Druschel. Pastry: Scalable, De-
centralized Object Location, and Routing for Large-
Scale Peer-to-Peer Systems. Lecture Notes in Com-
puter Science, 2218, 2001.

[10] I. Stoica, D. Adkins, S. Ratnasamy, S. Shenker,
S. Surana, and S. Zhuang. Internet Indirection Infras-
tructure. In The 1st Interational Workshop on Peer-
to-Peer Systems (IPTPS’02), 2002.

[11] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-to-Peer
Lookup Service for Internet Applications. In ACM
SIGCOMM 2001, pages 149–160, San Deigo, CA,
August 2001.

[12] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-to-Peer
Lookup Service for Internet Applications. Technical
Report TR-819, MIT, January 2002.

[13] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph.
Tapestry: An Infrastructure for Fault-tolerant Wide-
area Location and Routing. U. C. Berkeley Technical
Report UCB//CSD-01-1141, April 2000.

