21,507 research outputs found

    Analysis of Different Routing Algorithm for 2D-Torus Topology NoC Architecture under Load Variation

    Full text link
    The recital of Network-on-Chip (NoC) depends on the underlying routing techniques. There are a lot of requirements that has to be met. Such performance metrics are minimum latency, least power and maximum throughput. This paper deals with XY route, PROM routing, FTXY routing and DyAD routing on 5x5 2D torus topology. The simulation is performed on nirgam NoC simulator version 2.1 for constant bit rate traffic condition. The simulation results reveals the dominance of XY, PROM, FTXY and DyAD algorithms depicting the minimum values of overall average latency per channel (in clock cycles per flit) as 0.409836 overall average latency per channel (in clock cycles per packet) as 6.2535, average throughput as 16.68, and total network power as 35.6768 mw, achieved for FTXY routing algorithm

    Concurrent Geometric Multicasting

    Full text link
    We present MCFR, a multicasting concurrent face routing algorithm that uses geometric routing to deliver a message from source to multiple targets. We describe the algorithm's operation, prove it correct, estimate its performance bounds and evaluate its performance using simulation. Our estimate shows that MCFR is the first geometric multicast routing algorithm whose message delivery latency is independent of network size and only proportional to the distance between the source and the targets. Our simulation indicates that MCFR has significantly better reliability than existing algorithms

    Shortest path routing algorithm for hierarchical interconnection network-on-chip

    Get PDF
    Interconnection networks play a significant role in efficient on-chip communication for multicore systems. This paper introduces a new interconnection topology called the Hierarchical Cross Connected Recursive network (HCCR) and a shortest path routing algorithm for the HCCR. Proposed topology offers a high degree of regularity, scalability, and symmetry with a reduced number of links and node degree. A unique address encoding scheme is proposed for hierarchical graphical representation of HCCR networks, and based on this scheme a shortest path routing algorithm is devised. The algorithm requires 5(k-1) time where k=logn4-2 and k>0, in worst case to determine the next node along the shortest path

    Ant routing algorithm for the Lightning Network

    Get PDF
    We propose a decentralized routing algorithm that can be implemented in Bitcoin Lightning Network. All nodes in the network contribute equally to path searching. The algorithm is inspired from ant path searching algorithms.Comment: 10 pages, 1 figur

    M-ATTEMPT: A New Energy-Efficient Routing Protocol for Wireless Body Area Sensor Networks

    Get PDF
    In this paper, we propose a new routing protocol for heterogeneous Wireless Body Area Sensor Networks (WBASNs); Mobility-supporting Adaptive Threshold-based Thermal-aware Energy-efficientMulti-hop ProTocol (M-ATTEMPT). A prototype is defined for employing heterogeneous sensors on human body. Direct communication is used for real-time traffic (critical data) or on-demand data while Multi-hop communication is used for normal data delivery. One of the prime challenges in WBASNs is sensing of the heat generated by the implanted sensor nodes. The proposed routing algorithm is thermal-aware which senses the link Hot-spot and routes the data away from these links. Continuous mobility of human body causes disconnection between previous established links. So, mobility support and energy-management is introduced to overcome the problem. Linear Programming (LP) model for maximum information extraction and minimum energy consumption is presented in this study. MATLAB simulations of proposed routing algorithm are performed for lifetime and successful packet delivery in comparison with Multi-hop communication. The results show that the proposed routing algorithm has less energy consumption and more reliable as compared to Multi-hop communication.Comment: arXiv admin note: substantial text overlap with arXiv:1208.609
    • 

    corecore