842 research outputs found

    Modeling Data-Plane Power Consumption of Future Internet Architectures

    Full text link
    With current efforts to design Future Internet Architectures (FIAs), the evaluation and comparison of different proposals is an interesting research challenge. Previously, metrics such as bandwidth or latency have commonly been used to compare FIAs to IP networks. We suggest the use of power consumption as a metric to compare FIAs. While low power consumption is an important goal in its own right (as lower energy use translates to smaller environmental impact as well as lower operating costs), power consumption can also serve as a proxy for other metrics such as bandwidth and processor load. Lacking power consumption statistics about either commodity FIA routers or widely deployed FIA testbeds, we propose models for power consumption of FIA routers. Based on our models, we simulate scenarios for measuring power consumption of content delivery in different FIAs. Specifically, we address two questions: 1) which of the proposed FIA candidates achieves the lowest energy footprint; and 2) which set of design choices yields a power-efficient network architecture? Although the lack of real-world data makes numerous assumptions necessary for our analysis, we explore the uncertainty of our calculations through sensitivity analysis of input parameters

    Transit Node Routing Reconsidered

    Full text link
    Transit Node Routing (TNR) is a fast and exact distance oracle for road networks. We show several new results for TNR. First, we give a surprisingly simple implementation fully based on Contraction Hierarchies that speeds up preprocessing by an order of magnitude approaching the time for just finding a CH (which alone has two orders of magnitude larger query time). We also develop a very effective purely graph theoretical locality filter without any compromise in query times. Finally, we show that a specialization to the online many-to-one (or one-to-many) shortest path further speeds up query time by an order of magnitude. This variant even has better query time than the fastest known previous methods which need much more space.Comment: 19 pages, submitted to SEA'201

    Towards Terabit Carrier Ethernet and Energy Efficient Optical Transport Networks

    Get PDF

    Evaluating and Optimizing IP Lookup on Many core Processors

    Get PDF
    International audienceIn recent years, there has been a growing interest in multi/many core processors as a target architecture for high performance software router. Because of its key position in routers, hardware IP lookup implementation has been intensively studied with TCAM and FPGA based architecture. However, increasing interest in software implementation has also been observed. In this paper, we evaluate the performance of software only IP lookup on a many core chip, the TILEPro64 processor. For this purpose we have implemented two widely used IP lookup algorithms, DIR-24-8-BASIC and Tree Bitmap. We evaluate the performance of these two algorithms over the TILEPro64 processor with both synthetic and real-world traces. After a detailed analysis, we propose a hybrid scheme which provides high lookup speed and low worst case update overhead. Our work shows how to exploit the architectural features of TILEPro64 to improve the performance, including many optimization in both single-core and parallelism aspects. Experiment results show by using only 18 cores, we can achieve a lookup throughput of 60Mpps (almost 40Gbps) with low power consumption, which demonstrates great performance potentials in many core processor

    MLET: A Power Efficient Approach for TCAM Based, IP Lookup Engines in Internet Routers

    Full text link
    Routers are one of the important entities in computer networks specially the Internet. Forwarding IP packets is a valuable and vital function in Internet routers. Routers extract destination IP address from packets and lookup those addresses in their own routing table. This task is called IP lookup. Internet address lookup is a challenging problem due to the increasing routing table sizes. Ternary Content-Addressable Memories (TCAMs) are becoming very popular for designing high-throughput address lookup-engines on routers: they are fast, cost-effective and simple to manage. Despite the TCAMs speed, their high power consumption is their major drawback. In this paper, Multilevel Enabling Technique (MLET), a power efficient TCAM based hardware architecture has been proposed. This scheme is employed after an Espresso-II minimization algorithm to achieve lower power consumption. The performance evaluation of the proposed approach shows that it can save considerable amount of routing table's power consumption.Comment: 14 Pages, IJCNC 201
    • …
    corecore