
Evaluating and Optimizing IP Lookup on Many core

Processors

Peng He, Hongtao Guan, Gaogang Xie, Kavé Salamatian

To cite this version:

Peng He, Hongtao Guan, Gaogang Xie, Kavé Salamatian. Evaluating and Optimizing IP
Lookup on Many core Processors. 21st International Conference on Computer Communica-
tions and Networks (ICCCN 2012), Jul 2012, Munich, Germany, France. pp.1-7, 2012. <hal-
00737774>

HAL Id: hal-00737774

https://hal.archives-ouvertes.fr/hal-00737774

Submitted on 2 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL Université de Savoie

https://core.ac.uk/display/47286017?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00737774

Evaluating and Optimizing IP Lookup on Many
core Processors

Peng He∗†, Hongtao Guan∗, Gaogang Xie∗, Kavé Salamatian‡
∗Institute of Computing Technology, Chinese Academy of Sciences, China

†Graduate University of Chinese Academy of Sciences, China
‡LISTIC-PolyTech, Université de Savoie,

France

Abstract—In recent years, there has been a growing interest
in multi/many core processors as a target architecture for high
performance software router. This is a clear difference from the
previous trend to use dedicated network processors and hardware
components. Because of its key position in routers, hardware IP
lookup implementation has been intensively studied with TCAM
and FPGA based architecture. However, increasing interest in
software implementation has also been observed. In this paper,
we evaluate the performance of software only IP lookup on a
many core chip, the TILEPro64 processor. For this purpose we
have implemented two widely used IP lookup algorithms, DIR-
24-8-BASIC and Tree Bitmap. We evaluate the performance of
these two algorithms over the TILEPro64 processor with both
synthetic and real-world traces. After a detailed analysis, we
propose a hybrid scheme which provides high lookup speed
and low worst case update overhead. Our work shows how to
exploit the architectural features of TILEPro64 to improve the
performance, including many optimization in both single-core
and parallelism aspects. Experiment results show by using only
18 cores, we can achieve a lookup throughput of 60Mpps (almost
40Gbps) with low power consumption, which demonstrates great
performance potentials in many core processor.

I. INTRODUCTION

Flexibility, scalability and high performance are three
mandatory characteristics for modern network routers. In order
to achieve these desirable properties, several papers have
proposed to use software based router achieving high level
of flexibility in place of traditional dedicated hardware archi-
tecture and take advantage from parallelism in many-core or
multi-processor to achieve the needed performance in packet
processing [1], [2], [3]. While there exists a large literature on
the usage of dedicated network processors, like the Intel IXP
series, however these processors have been heavily criticized
for the complexity of their execution model and the difficulty
of software development. In contrast, multi/many core chips
systems targeted to network applications are becoming widely
available at reasonable price and offer a familiar programming
environment which allows easy implementation of customized
packet processing. While there is a relative large literature
about these systems, it mainly looks at the architecture level,
and little evaluation of concrete forwarding tasks inside the
router are provided.

Among all the forwarding tasks in the data-plane of a router
IP lookup is obviously a critical one. Routing tables in nowa-
days core routers can easily grow to several hundred thousand

of prefixes, resulting in large FIB (forwarding information
base) sizes and slow lookup speed. The last years have seen,
several new IP lookup schemes to overcome the challenge
posed by IP lookup with continuously growing routing table
and ever increasing line speed. These new lookup approaches
include hardware TCAM based solutions [4] as well as al-
gorithmic solutions [5], [6], and even a hybrid solution [7].
TCAM based solutions, while fast, are relatively expensive
and have high power consumption, while algorithmic solutions
need several memory accesses per lookup that results in slower
lookup speed.

In this paper, we will evaluate the performance of algo-
rithmic based IPv4 lookup algorithms on a popular highly
multi-core processor, the TILEPro64 processors. TILEPro64
processors contain 64 full programmable processing cores. A
full TILEPro64 development board that can support up to 8×1
Gbps plus a 1 × 10 Gbps Ethernet Interface costs currently
several thousands dollars, making this platform affordable for
practical usage as a software router. Indeed more powerful
processors are available these days meaning that the results
presented in this paper are just lower bound on potential IP
lookup speeds.

For the software IP lookup we choose two simple and
practical algorithms, DIR-24-8-BASIC[8] and Tree Bitmap[9].
DIR-24-8-BASIC is used in many software router prototypes,
such as RouteBricks[2], PacketShader[3] etc., while Tree
Bitmap is a well-known IP lookup algorithm with low memory
footprint and fast lookup speed. Other algorithms are either
too complicated or not suitable for the multicore platform.
For example, Bloom Filter based IP lookup needs hardware
implementation of several hundreds of hash functions, that will
need dedicated FPGAs, while our aim in this paper is to study
a software only implementation on a many-core platform.

In order to get a full understanding of performance of differ-
ent algorithms, we do our evaluation experiments on a routing
table issued from RouteViews project[10] and containing about
358K prefixes. We’ve found that, in a single core environment,
the DIR-24-8-BASIC algorithms run at least 3 times faster
than Tree Bitmap for all IP traces. However, the FIB size
generated by Tree Bitmap is almost 20 times lower than DIR-
24-8-BASIC. In the parallel experiments, we have observed
that the run-to-complete execution model is superior to the
pipeline model. Our experiment shows that, by using only 18

Fig. 1. The Tree Bitmap Algorithm

cores out of 64 cores on TILEPro64, we can achieve a lookup
throughput of up to 60Mpps (almost 40Gbps for 64 bytes per
packet) with a power consumption of less than 20W[11], to be
compared with 240W for GPU based PacketShader. Moreover
as the packet processing is done directly on the TILEPro64
processor the lookup delay is very small compared to the delay
needed for batching in PacketShader.

The contributions of this paper can be summarized as
follows: 1) we describe and evaluate how IP lookup algorithms
can be implemented in practice on a many-core processor—
TILEPro64. We implemented various optimization tricks, in-
cluding both algorithmic refinements and architecture specific
optimizations. 2) We measured the performance of different IP
lookup algorithms on many core chips using different traces.
3) Based on our evaluation results, we propose a hybrid
scheme to combine the strengths of two algorithms. This
hybrid scheme has the similar performance with DIR-24-8-
BASIC on single-core but has a much smaller update overhead
in the worst case. The remainder of this paper is organized
as follows. In Section 2, we will provide some background,
including the two algorithms and the TILEPro64. In Section
3, we will present our implementation and the implemented
optimizations. In Section 4, we will report our hardware setup
and experimental evaluation. In Section 5, we will present a
hybrid IP lookup scheme and evaluate its performances. The
paper will conclude in section 6.

II. BACKGROUND

A. The Tree bitmap algorithm

The Tree Bitmap algorithm is a multi-bit trie IP lookup
algorithm using a clever encoding scheme. Fig. 1 shows an
example of a 3-bit stride Tree Bitmap trie. In Fig. 1, we
can see the whole binary trie is divided into several multi-
bit nodes having two bitmaps, the internal bitmap (IBM) and
the external bitmap (EBM). The IBM is used to represent the
prefixes stored in this multi-bit node, and the EBM is used to
represent the position of the child of this multi-bit node.

We use the Node A as an example to show the encoding
scheme of the IBM and the EBM. A 3-bit sub-trie has 8

Fig. 2. The DIR-24-8-BASIC Algorithm

possible leaves. In Node A, only the first and fourth leaves
have the pointers to children. Thus the EBM of this node is
10010000. The IBM has 1 bit for every stored prefixes. It has
one bit for prefixes of length 0, two following bits for prefixes
of length 1, and four following bits for prefixes of length 2. In
Figure 1, we have two stored prefixes, P1= * and P2=01*. P1
is a prefix of length 0, so we set the first bit of IBM to 1, P2
is the second prefix of length 2, so we set the fifth (1+2+2)
bit of IBM to 1. Thus the IBM of this node is 1000100. To
note, a K stride node has a 2K bit EBM and 2K −1 bit IBM.

Suppose we have a bit sequence 011111 to be searched.
The bit sequence consists of two 3-bit sub bit sequence, 011
and 111. The searching starts from Node A with bits 011.
As mentioned, 011 means the fourth “exit point” in Node A.
The fourth bit of EBM is 1 and the number of 1s to the left
of the fourth bit is 1. So we move to the Node C (the 1st
(starting from 0) node in the next level node array) with 111.
The eighth bit (111) of EBM in Node C is 0, which means
we can’t continue to the next node. We begin next, to check
if inside the traversed nodes, there is any matching prefix.
Since the IBM of Node C is all zero, we turn back to Node A
searching bits 011. We successively remove the right-most bits
of the bit sequence, and check the corresponding bit position
in IBM, until we find a 1 in that position. For example, we
get 01* in the first iteration, we check the fifth bit of IBM and
find a matched prefix P2.

B. The DIR-24-8-BASIC algorithm

Compared to the Tree Bitmap algorithm, DIR-24-8-BASIC
is much simpler. It uses two tables to store all the prefixes. The
first table, TBL24 which uses the first 24 bits of an IP address
as an index, stores all the prefixes with length shorter than 25
bits. If more than one prefixes share the same first 24 bits,
the corresponding entry of these prefixes in TBL24 is filled
with a pointer pointing to a 256 entries block in the second
table, TBLlong, storing all the possible suffix of the left 8-bits.
When there is only a single prefix with matching first 24 bits,
TBL24 contains the next hop information. However TBLlong
always contains the next hop information.

An example is shown in Fig. 2, where no prefixes share
the first 24 bits of Prefix 10.21.3.0/24, thus the egress A is
directly stored in TBL24 ; Prefix 10.21.2/24 and 10.21.2.0/25
has the same first 24 bits, thus the corresponding entry in
TBL24 stores a pointer which points to the 12th block in
TBLlong. When searching an IP address, we first use the

TABLE I
FREQUENCY AND CACHE SIZE

type clock frequency cache size
TILEPro64 700MHz L2 64KB / L3 4MB

E5506 2133MHz L2 1MB / L3 4MB

TABLE II
CACHE SYSTEM AND CACHE MISS PENALTY

type cache system penalty(cycles)
TILEPro64 distribute L1 8 / L2 30 ∼ 80

E5506 share L1 14 ∼ 15 / L2 ∼ 100

first 24-bits of IP address as an index to read one entry of
Table TBL24. Depending on the content of TBL24, the lookup
is terminated or we proceed to table TBLlong following the
pointer in TBL24.The leftmost 8-bit of the IP address are used
to obtain the index of the prefix in Table TBLlong and access
it with one more memory access. Since currently, most of
prefixes have length less than 25 bits in the core routing table,
it only takes one memory access to do any IP lookup.

C. The TILEPro64 architecture

TILEPro64 is a many-core processor based on Tile Archi-
tecture that consists of a 2D grid of homogeneous computing
elements, called tiles or cores. Each tile is a full-featured CPU
that can independently run an entire operating system. As the
name implies, TILEPro64 consists of 8×8 cores, that is much
larger compared to mainstream multi-core processors, which
usually have only 4 ∼ 8 cores. However, TILEPro64 cores
have differences with for example an Intel Xeon cores. Table
I lists the differences between a TILEPro64 core and an Intel
Xeon E5506 one.

As can be seen from Table I and Table II, a TILEPro64
core is relatively weaker than one in an Intel Xeon E5506.
Therefore, while we can assign heavy processing to a single
Intel Xeon core, e.g. all the processing of a software router’s
dataplane, including the decoding, IP lookup, checksums, etc.
in a single thread on a single core of a Xeon E5506, on
TILEPro64 we split different dataplane activities between
several cores. Following this, we have assigned entire cores
of the TILEPro64 to only do IP lookup. As the programmable
on-chip network on TILEPro64 can be used to eliminate
the communication overhead of adding to other cores other
dataplane activities, and the distributed cache system ensures
that the cache isolation, we can evaluate the IP lookup load
independently of the other activities of the control plane that
will be assigned to other cores.

III. IP LOOKUP ON TILEPRO64

In this section, we present our implementation and detail
the optimization tricks we used.

A. Implementation

Tree Bitmap: We implemented two versions of this al-
gorithm, bitmap and bitmap 5. The bitmap implementation
uses the built-in type uint16 t in TILE64 core to store the

bitmaps inside the multi-bit node. This implementation is
specially suitable for Tree Bitmap with 4 bits stride as it
eliminates the overhead of querying the stride information
during the lookup process. The bitmap 5 implementation is
more general and uses array uint32 t type to store the bitmaps.
This implementation can be tuned to any trie with 5 bits or
more strides. In both implementations, a single 32-bit pointer
is used to point to both the child and result arrays. Therefore
each node of bitmap needs 2 × 2 + 4 = 8 Bytes, and each
node of bitmap 5 costs 2× 4× 2(stride−5) + 4 Bytes.

DIR-24-8-BASIC: We implemented DIR-24-8-BASIC us-
ing 32-bits integer for each entry of both TBL24 and TBLlong.
For each entry of Table TBL24, one bit is used as a flag to
signal if this entry point to TBLlong or if it is a definitive
prefix, 5 bits are used to store the prefix length, and 26
bits are used to store an index or a pointer to the next-hop
information. The 26 bits index is necessary for lookup and
update. In each entry of table TBLlong, 5-bits are used to store
the prefix length, and the leftover bits are used as a pointer to
the next hop information. As table TBL24 needs 224 entries,
our implementation of DIR-24-8-BASIC needs at least 64MB
DRAM memory (4 bytes per entry in table TBL24).

B. Optimization tricks

Large page Rather than using the by default memory page
size of 4 KBytes we have used in our development large
page, which contains 16MB memory space. This optimization
reduces the TLB misses during the IP lookup, than can become
very important for DIR-24-8-BASIC that uses a large amount
of memory. This is even beneficial for the Tree Bitmap that
uses much less memory, since it reduces the TLB misses. Our
experiment shows that this implementation detail improves
highly the performance the lookup by decreasing lookup time
by almost 20%.

Initializing an array for trie A way of improving the
lookup speed is to implement a lookup table for the first
consecutive bits in the trie-based IP lookup. For example, for
the first 13 bits of an IP address, we build an initial array with
8K entries that enables fast access to the node storing these
prefixes. The array speeds up the lookup, however it increases
the update overhead. In our implementation of Tree Bitmap,
we have used such an array both in bitmap and bitmap 5.

Counting the number of 1’s in a bitmap The Tree Bitmap
algorithm needs to count how many 1’s in one bitmap. This
task can easily be done in hardware. However, in software,
thing is more complex and one have to use a lookup table to
get the number of 1’s in one bitmap. This adds more memory
accesses during the lookup and degrades the performance.
Fortunately, the TILEPro64 processor implements a set of bit
manipulation instructions that can count the number of 1’s in
hardware. We use these instructions to count the number of
1’s in one bitmap.

Lazy checking As mentioned above, one single multi-bit
node can have two operations: checking the EBM to find the
”exit point” and checking the IBM for the prefixes inside the
node. Since the IBM checking is time consuming, we perform

a lazy checking, i.e. we only check the EBM of traversed node
and we use an extra stack to store them; when the searching
cannot proceed to the next node, we pop the nodes in the stack
to perform IBM checking. As long as there is a single prefix
match, the lookup process terminates. Our experiment shows
this trick can save up 30 to 50 cycles per lookup.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the two IP
lookup algorithms with both synthetic and real world traces.
We discuss our evaluation traces and the performance results
in detail.

A. Evaluation traces

The nature of the traces used to evaluate IP lookup is
very important. An IP trace with high locality can lead to a
very high performance result because many memory accesses
cached in the L2 cache of CPU can be reused. Random
IP traces, while having limited locality, contain too many
“invalid” IP addresses (IP address does not match any prefix
in one routing table), that usually have very short searching
path in the trie-based IP lookup algorithm. Using these trace
can also result into “illusion” high performance. In order to
get a full understanding of the performance of IP lookup in
software, we use both synthetic and real world traces. We use
three types of traces that are listed below:

Random Match: Let S be the set of all the prefixes in one
routing table. We use the prefixes in S to construct a binary
trie and we leaf pushing this trie, i.e. all the prefixes are stored
only at the leaf nodes. We are representing as L(p) the leaf
nodes that stores the prefix p ∈ S. For any prefix p ∈ S ,
let’s define a set, P (p), containing all paths starting from the
root node and ending at the leaf nodes that belong to L(p).
These paths can be viewed as the “leaf pushing” prefixes for
the original prefix p. For any prefix p ∈ S, we collect the
longest path in P (p), and use this paths to form a new prefix
set. We call this set the Random Match Set. Random Match
traces are generated by repeating the following steps:

1) Choose randomly one prefix in the Random Match Set.
2) If the prefix is not 32-bit long, we use a random number

to complement this prefix into a 32-bit IP address.
The Random Match trace has three characteristics: 1) it is
unbiased for all prefixes in S; 2) it has low locality; 3) IP
addresses in Random Match trace have the longest searching
path. Thus, the performance result gathered on this trace can
be considered as the worst case for all implementation. Fig. 3
shows how to construct a Random Match trace:

Realistic Random Match: We now add some locality to
our evaluation trace thanks to realistic traces. We have used
traces provided by CAIDA [12], and we have extracted all
the destination IP addresses. Unfortunately, these IP addresses
can not be used directly, because they are anonymized and
many of them can’t match any prefix in a real routing table.
However the anonymization maintains the prefix structure.
Therefore, in order to generate a trace with realistic locality,

Fig. 3. Random Match Trace Generation

TABLE III
EVALUATION TRACES

Name unique IP addresses Generated from
Random Match 353398 routing tables from [10]

Realistic Random Match A 24424 [12]
Realistic and Filtered A 17020 [12]

Realistic Random Match B 81811 [12]
Realistic and Filtered B 41654 [12]

we have replaced the anonymized IP addresses with “valid”
IP addresses:

1) We define an association array H mapping anonymized
addresses to the “valid” one.

2) For any anonymized IP p, if there exists H[p], we replace
it with H[p]

3) If not, we generate a “valid” IP address q using the
method described in random match and we replace p
with q, and let H[p] = q.

We can expect to have higher performance on this trace as
realistic locality is enforced.

Realistic and Filtered: For this trace we directly used the
anonymized realistic trace coming from CAIDA. We filtered
out all “valid” IP addresses. This trace will have the highest
locality among the three kinds of traces. However the trace
will only match a small fraction prefixes in a routing table.

We have generated five traces: one Random Matched, two
for Realistic Random Matched and two Realistic and filtered
ones. Each trace was containing 1 million IP addresses. The
detailed information for these traces is listed in Table III.

B. Single-core Performance evaluations

In each experiment, we have used two cores: one core only
for loading the traces and extracting the IP addresses, the other
core receiving the IP addresses on the on-chip network and
doing the IP lookup. We have used two configurations for
Tree Bitmap, one using an initial array of 213 entries, and 4
bit stride; the second using an initial array of 211 entries, and
7 bits of stride. We name them respectively TBP 13-4-4-4-3

DIR 13-4-4-4-4-3 11-7-7-7
algorithms

0

100

200

300

400

500

600
cy

cl
es

 p
er

 lo
ok

up
performance

Random Match
Realistic Random Match A
Realistic and Filtered A
Realistic Random Match B
Realistic and Filtered B

Fig. 4. Single core Performance Results

and TBP 11-7-7-7. The memory footprint of FIB generated
by DIR-24-8-BASIC, TBP 13-4-4-4-4-3 and TBP 11-7-7-7
is respectively 69.1MB, 2.9MB and 4MB. Fig. 4 shows the
performance results for a single core of TILEPro64.

From the Fig. 4, the following observations can be made.
First, the lookup speed is highly related to the number of
memory accesses. Although the FIB size of Tree Bitmap is
almost 20 times less than DIR-24-8-BASIC, DIR-24-8-BASIC
is still 3 times faster. Second, the time spent on processing
instructions can not be ignored. Small stride leads to a faster
IBM checking, which makes TBP 13-4-4-4-4-3 faster. Third,
the locality of the trace determines the final performance.
To note, we measure the lookup speed in cycles. The clock
frequency of TILEPro64 is 700MHz, which means the each
cycle is 1.4 ns. So in the single-core environment, the fastest
algorithms can only achieve around 168 ns per lookup.

C. Parallel Performance Evaluations

We have used for the experiment in this section two parallel
execution models: pipeline and run-to-complete model.

The pipeline model is only applied to the Tree Bitmap
algorithm. In the pipeline model, for each IP lookup, each core
only need to do the processing of one multi-bit node (including
both the IBM and EBM checking) in one level of the Tree
Bitmap trie, then transfer the intermediate result to the next
core. There are many proposed algorithms [13][14] to balance
the memory utilization of each pipeline stage. However these
works assume that the IP lookup engine has multiple single
port memories. For example, [13] splits the whole IP lookup
into 24 stages, requiring 24 banks of single port memory.
TILE64Pro only has 4 DRAM memory interface which does
not conform this assumption. So we do not adopt any of these
algorithms and simply divide the Tree Bitmap trie by its levels.

We use 5 cores for TBP 13-4-4-4-4-3 and 3 for TBP 11-
7-7-7. It is noteworthy that in the pipeline model, we can’t
perform the “lazy checking” optimization trick. We show in
Fig. 5 the performance achieved by the pipeline. Compared to

13-4-4-4-4-3 11-7-7-7
algorithms

0

100

200

300

400

cy
cl

es
 p

er
 lo

ok
up

performance

Random Match
Realistic Random Match A
Realistic and Filtered A
Realistic Random Match B
Realistic and Filtered B

Fig. 5. Pipeline Parallel Performance of Tree Bitmap

the Fig. 4, we can observe that the performance gain is about
3 fold. This can be explained as most of the IP addresses in
the evaluation traces match prefixes that have length less than
25. Looking up these IP addresses only need 3 to 4 memory
accesses. So in average, the speed up rate is around 3 times.
And once again, TBP 13-4-4-4-4-3 is faster.

In Fig. 6-7 we show the performance achieved by the run-
to-complete model. In this approach, one core is used as a
dispatcher that splits the workload by forwarding the IP ad-
dresses to the other cores in a round-robin fashion. Whenever a
core finishes its lookup, a new IP address is forwarded to it and
looked up. This model parallels all algorithmic components.
In both figures, Limit represents the average transfer time of
the on-chip network, it also provides an upper bound on the
performance we can achieve.

0 2 4 6 8 10 12 14 16
number of cores

0

20

40

60

80

100

120

140

av
er

ag
e

IP
 lo

ok
up

 c
yc

le
s

performance of TilePro64

Random Match
Realistic Random Match A
Realistic and Filtered A
Realistic Random Match B
Realistic and Filtered B
Limit

Fig. 6. Run-to-complete Parallel Performance of DIR-24-8-BASIC

The Fig. 6 shows that the highest performance, about 20
cycles per lookup, is achieved when the number of parallel

0 2 4 6 8 10 12 14 16
number of cores

0

50

100

150

200

250

300

350
av

er
ag

e
IP

 lo
ok

up
 c

yc
le

s
performance of TilePro64

Random match
Realistic Random Match A
Realistic and Filtered A
Realistic Random Match B
Realistic and Filtered B
Limit

(a) TBP 13-4-4-4-4-3

0 2 4 6 8 10 12 14 16
number of cores

0

50

100

150

200

250

300

350

av
er

ag
e

IP
 lo

ok
up

 c
yc

le
s

performance of TilePro64

Random Match
Realistic Random Match A
Realistic and Filtered A
Realistic Random Match B
Realistic and Filtered B
Limit

(b) TBP 11-7-7-7

Fig. 7. Run-to-complete Parallel Performance of Tree Bitmap

cores reaches 8. This is equivalent to about 20Gbps of through-
put when packets are 64 Bytes. TILEPro64 has four memory
controllers and we only use one of them in our experiment.
This means that, if necessary, the two memory controllers can
be used to provide enough memory bandwidth to support 18
cores (2 for dispatching and 16 for lookup) reaching a 40Gbps
lookup throughput. In Fig. 7, as the number of lookup cores
increased, the performance increased almost linearly (or the
lookup time decreases). However, we achieve at best 28 cycles
per lookup by using 16 cores, which is still slower than DIR-
24-8-BASIC. This confirms that DIR-24-8-BASIC is superior
in speed to tree bitmap (as it lookup time is 8ns less) by at
the cost of a memory footprint that is 20 times larger.

V. A HYBRID IP LOOKUP SCHEME

From the evaluation above, we can conclude that the DIR-
24-8-BASIC runs faster than Tree Bitmap on TILEPro64.
However, this algorithm suffers from a high update overhead.

TABLE IV
UPDATE OVERHEAD OF TWO ALGORITHMS

Algorithms Add/Del Entry set Node copy Node alloc
DIR-24-8-BASIC Add 586.67 null null

Del 553.95 null null
TBP 13-4-4-4-3 Add 1.08 1.15 0.97

Del 0.39 1.43 0.97

Suppose we want to delete a /8 prefix, we need 224−8 = 65536
memory accesses. This worst case update overhead may be-
come a performance bottleneck in practice. In contrast, the
update overhead of Tree Bitmap is much less. In this section,
we propose a hybrid IP lookup scheme to combine the strength
of both.

The root of high update overhead lies in the short prefixes
(< /17) stored in TBL24. These short prefixes overlap a large
range in TBL24. Updating these prefixes need to modify all
the entries in this range. In order to prevent the high overhead,
one can put all these short prefixes in a Tree Bitmap trie. This
will result as a side effect, reducing the number of memory
access. Because these prefix are all near the root node in the
trie. In TBP 13-4-4-4-4-3, only one memory access is needed
for such short prefixes. As mentioned above, the lookup speed
is highly related to the number of memory access. So this
hybrid scheme can also achieve high performance for these
short prefixes.

The basic idea of our hybrid lookup scheme is as follows:
1) Store the short prefixes of length 1 to 16 in a Tree

Bitmap trie.
2) Store the prefixes of length 17 to 24 in the Table TBL24.
3) For the prefixes of length 25 to 32, we use only one

entry in Table TBL24 to store a pointer and put the
remaining 8-bit in a sub-trie.

A simple comparison of update overhead is listed in Table
IV. We measure the average memory operation times in
both DIR-24-8-BASIC and TBP 13-4-4-4-3 when adding and
deleting all the /8 ∼ /16 prefixes in our routing table. There
are 12894 prefixes in total. As mentioned, one entry of DIR-
24-8-BASIC is 4 bytes; one node of TBP 13-4-4-4-3 is 8
bytes. From the table, we can estimate the update overhead
of TBP-13-4-4-4-3 is about several hundreds times less than
DIR-24-8-BASIC. Because our hybrid algorithm uses the TBP
13-4-4-4-3 to store these prefixes, we can conclude the update
overhead of this hybrid algorithm is much less.

The lookup process on the hybrid scheme is similar to the
lookup process in DIR-24-8-BASIC. We first perform the long
prefix lookup (> /16) using Table TBL24 and the attached
sub-tries. If there are not any prefixes matching this IP address,
we perform the lookup process on the independent tree Bitmap
trie which store the short prefixes. The data structure of the
hybrid algorithm is shown in Fig 8.

Fig. 9 shows the performance achieved by our proposed
hybrid scheme on a single-core. We used the TBP 13-4-4-4-
4-3 as the independent trie, and stride of 4 as the sub multi-bit
tree attached to Table TBL24.

From the Fig. 9, we see that, as we expecting from the

Fig. 8. Data Structure of the hybrid algorithm

DIR hybrid 13-4-4-4-4-3
algorithms

0

100

200

300

400

500

600

cy
cl

es
 p

er
 lo

ok
up

performance

Random Match
Real Random Match A
Real Filter A
Real Random Match B
Real Filter B

Fig. 9. Performance of our hybrid IP lookup scheme

design, our hybrid scheme achieves a performance similar with
the DIR-24-8-BASIC. We now give a brief analysis of the
worst case update overhead. As mentioned above, the worst
case update overhead of our hybrid scheme is bound by the
update overhead of Tree Bitmap. When updating happens in
Tree Bitmap algorithm, the worst case is to reconstruct a full
child array. In our case, we use a stride of 4, which means
the largest child array has up to 16 multi-bit nodes. So the
update overhead is bounded by 16 × 8 = 256 bytes memory
copy. Compared to DIR-24-8-BASIC, which needs larger than
65536 memory accesses in the worst case, our scheme has a
much less update overhead. However the memory footprint of
the hybrid scheme and the DIR-24-8-BASIC are comparable
as the TBL24 is reused.

VI. CONCLUSION

To summarize, in this work, we implemented two widely
used IP lookup algorithms on TILEPro64 and evaluated the
performance of them with both synthetic and real world traces.
We have been able to achieve a throughput of 40 Gbps that
is in the same area the one attained by the PacketShader on a
GPU[3] with much lower power consumption. We also found
that, on our platform, the IP lookup speed is highly related to
the number of memory accesses. Although the small sized FIB
can be easily cached, IP lookup with less memory accesses is
always faster. We also evaluated the performance of different
parallel model. Our experiments show the run-to-complete
model is more suitable on many core chips. With 18 cores,
we can achieve almost 60 Mpps lookup throughput. In the
end of this paper, we propose a new hybrid IP lookup scheme
which provides a low bound to the worst case update overhead
for DIR-24-8-BASIC. Our work demonstrates the performance
power of many core chips, and also gains some insight into
the IP lookup on many-core processors.

REFERENCES

[1] B. Chen and R. Morris, “Flexible control of parallelism in a multipro-
cessor pc router,” in Proceedings of the 2001 USENIX Annual Technical
Conference, 2001, pp. 333–346.

[2] M. Dobrescu, N. Egi, K. Argyraki, B. Chun, K. Fall, G. Iannaccone,
A. Knies, M. Manesh, and S. Ratnasamy, “Routebricks: Exploiting
parallelism to scale software routers,” in ACM SOSP, vol. 9. Citeseer,
2009.

[3] S. Han, K. Jang, K. Park, and S. Moon, “Packetshader: a gpu-accelerated
software router,” in ACM SIGCOMM Computer Communication Review,
vol. 40, no. 4. ACM, 2010, pp. 195–206.

[4] D. Shah and P. Gupta, “Fast updating algorithms for tcam,” Micro, IEEE,
vol. 21, no. 1, pp. 36–47, 2001.

[5] V. Srinivasan and G. Varghese, “Fast address lookups using controlled
prefix expansion,” ACM Transactions on Computer Systems (TOCS),
vol. 17, no. 1, pp. 1–40, 1999.

[6] B. Lampson, V. Srinivasan, and G. Varghese, “Ip lookups using multiway
and multicolumn search,” in INFOCOM’98. Seventeenth Annual Joint
Conference of the IEEE Computer and Communications Societies.
Proceedings. IEEE, vol. 3. IEEE, 1998, pp. 1248–1256.

[7] L. Luo, G. Xie, Y. Xie, L. Mathy, and K. Salamatian, “A hybrid ip
lookup architecture with fast updates,” in to appear in INFOCOMM’12.
IEEE, 2012.

[8] P. Gupta, S. Lin, and N. McKeown, “Routing lookups in hardware at
memory access speeds,” in INFOCOM’98. Seventeenth Annual Joint
Conference of the IEEE Computer and Communications Societies.
Proceedings. IEEE, vol. 3. IEEE, 1998, pp. 1240–1247.

[9] W. Eatherton, G. Varghese, and Z. Dittia, “Tree bitmap: hard-
ware/software ip lookups with incremental updates,” ACM SIGCOMM
Computer Communication Review, vol. 34, no. 2, pp. 97–122, 2004.

[10] “Routeviews,” http://www.routeviews.org.
[11] “Tilepro64 power consumption,” http://tilera.com/products/processors/TILEPRO64.
[12] P. H. kc claffy, Dan Andersen, “The caida

anonymized 2011 internet traces 20110217,”
http://www.caida.org/data/passive/passive 2011 dataset.xml.

[13] W. Jiang and V. Prasanna, “A memory-balanced linear pipeline architec-
ture for trie-based ip lookup,” in High-Performance Interconnects, 2007.
HOTI 2007. 15th Annual IEEE Symposium on. IEEE, 2007, pp. 83–90.

[14] F. Baboescu, D. Tullsen, G. Rosu, and S. Singh, “A tree based router
search engine architecture with single port memories,” in Computer Ar-
chitecture, 2005. ISCA’05. Proceedings. 32nd International Symposium
on. IEEE, 2005, pp. 123–133.

