4 research outputs found

    Route discovery with constant memory in oriented planar geometric networks

    Get PDF
    We address the problem of discovering routes in strongly connected planar geometric networks with directed links. Motivated by the necessity for establishing communication in wireless ad hoc networks in which the only information available to a vertex is its immediate neighborhood, we are considering routing algorithms that use the neighborhood information of a vertex for routing with constant memory only. We solve the problem for three types of directed planar geometric networks: Eulerian (in which every vertex has the same number of incoming and outgoing edges), Outerplanar (in which a single face contains all vertices of the network), and Strongly Face Connected, a new class of geometric networks that we define in the article, consisting of several faces, each face being a strongly connected outerplanar graph

    Constant memory routing in quasi-planar and quasi-polyhedral graphs

    Get PDF
    AbstractWe address the problem of online route discovery for a class of graphs that can be embedded either in two or in three-dimensional space. In two dimensions we propose the class of quasi-planar graphs and in three dimensions the class of quasi-polyhedral graphs. In the former case such graphs are geometrically embedded in R2 and have an underlying backbone that is planar with convex faces; however within each face arbitrary edges (with arbitrary crossings) are allowed. In the latter case, these graphs are geometrically embedded in R3 and consist of a backbone of convex polyhedra and arbitrary edges within each polyhedron. In both cases we provide a routing algorithm that guarantees delivery. Our algorithms need only “remember” the source and destination nodes and one (respectively, two) reference nodes used to store information about the underlying face (respectively, polyhedron) currently being traversed. The existence of the backbone is used only in proofs of correctness of the routing algorithm; the particular choice is irrelevant and does not affect the behaviour of the algorithm

    Route Discovery with Constant Memory in Oriented Planar Geometric Networks

    No full text
    We address the problem of discovering routes in strongly connected planar geometric networks with directed links. We consider two types of directed planar geometric networks: Eulerian (in which every vertex has the same number of ingoing and outgoing edges) and outerplanar (in which a single face contains all the vertices of the network). Motivated by the necessity for establishing communication in wireless networking based only on geographic proximity, in both instances we give algorithms that use only Escuela de Ciencias Fisico-Matemticas de la Universidad Michoacana de San Nicols de Hidalgo, Mxico
    corecore