350 research outputs found

    Experimental investigation of high-dimensional quantum key distribution protocols with twisted photons

    Get PDF
    Quantum key distribution is on the verge of real world applications, where perfectly secure information can be distributed among multiple parties. Several quantum cryptographic protocols have been theoretically proposed and independently realized in different experimental conditions. Here, we develop an experimental platform based on high-dimensional orbital angular momentum states of single photons that enables implementation of multiple quantum key distribution protocols with a single experimental apparatus. Our versatile approach allows us to experimentally survey different classes of quantum key distribution techniques, such as the 1984 Bennett \& Brassard (BB84), tomographic protocols including the six-state and the Singapore protocol, and to investigate, for the first time, a recently introduced differential phase shift (Chau15) protocol using twisted photons. This enables us to experimentally compare the performance of these techniques and discuss their benefits and deficiencies in terms of noise tolerance in different dimensions.Comment: 13 pages, 4 figures, 1 tabl

    Self-healing high-dimensional quantum key distribution using hybrid spin-orbit Bessel states

    Get PDF
    Using spatial modes for quantum key distribution (QKD) has become highly topical due to their infinite dimensionality, promising high information capacity per photon. However, spatial distortions reduce the feasible secret key rates and compromise the security of a quantum channel. In an extreme form such a distortion might be a physical obstacle, impeding line-of-sight for free-space channels. Here, by controlling the radial degree of freedom of a photon's spatial mode, we are able to demonstrate hybrid high-dimensional QKD through obstacles with self-reconstructing single photons. We construct high-dimensional mutually unbiased bases using spin-orbit hybrid states that are radially modulated with a non-diffracting Bessel-Gaussian (BG) profile, and show secure transmission through partially obstructed quantum links. Using a prepare-measure protocol we report higher quantum state self-reconstruction and information retention for the non-diffracting BG modes as compared to Laguerre-Gaussian modes, obtaining a quantum bit error rate (QBER) that is up to 3 times lower. This work highlights the importance of controlling the radial mode of single photons in quantum information processing and communication as well as the advantages of QKD with hybrid states.Comment: Published version, 15 pages, 6 figures, 2 table

    Quantum cryptography: key distribution and beyond

    Full text link
    Uniquely among the sciences, quantum cryptography has driven both foundational research as well as practical real-life applications. We review the progress of quantum cryptography in the last decade, covering quantum key distribution and other applications.Comment: It's a review on quantum cryptography and it is not restricted to QK

    High-dimensional Encoding in the Round-Robin Differential-Phase-Shift Protocol

    Full text link
    In quantum key distribution (QKD), protocols are tailored to adopt desirable experimental attributes, including high key rates, operation in high noise levels, and practical security considerations. The round-robin differential phase shift protocol (RRDPS), falling in the family of differential phase shift protocols, was introduced to remove restrictions on the security analysis, such as the requirement to monitor signal disturbances. While the RRDPS protocol requires the encoding of single photons in high-dimensional quantum states, at most, only one bit of secret key is distributed per sifted photon. However, another family of protocols, namely high-dimensional (HD) QKD, enlarges the encoding alphabet, allowing single photons to carry more than one bit of secret key each. The high-dimensional BB84 protocol exemplifies the potential benefits of such an encoding scheme, such as larger key rates and higher noise tolerance. Here, we devise an approach to extend the RRDPS QKD to an arbitrarily large encoding alphabet and explore the security consequences. We demonstrate our new framework with a proof-of-concept experiment and show that it can adapt to various experimental conditions by optimizing the protocol parameters. Our approach offers insight into bridging the gap between seemingly incompatible quantum communication schemes by leveraging the unique approaches to information encoding of both HD and DPS QKD.Comment: 10 pages, 6 figure

    Measuring azimuthal and radial modes of photons

    Get PDF
    With the emergence of the field of quantum communications, the appropriate choice of photonic degrees of freedom used for encoding information is of paramount importance. Highly precise techniques for measuring the polarisation, frequency, and arrival time of a photon have been developed. However, the transverse spatial degree of freedom still lacks a measurement scheme that allows the reconstruction of its full transverse structure with a simple implementation and a high level of accuracy. Here we show a method to measure the azimuthal and radial modes of Laguerre-Gaussian beams with a greater than 99% accuracy, using a single phase screen. We compare our technique with previous commonly used methods and demonstrate the significant improvements it presents for quantum key distribution and state tomography of high-dimensional quantum states of light. Moreover, our technique can be readily extended to any arbitrary family of spatial modes, such as mutually unbiased bases, Hermite-Gauss, and Ince-Gauss. Our scheme will significantly enhance existing quantum and classical communication protocols that use the spatial structure of light, as well as enable fundamental experiments on spatial-mode entanglement to reach their full potential.Comment: 7 pages, 4 figures, 1 tabl

    Advanced Quantum Communications via Satellites

    Full text link
    This thesis investigates the feasibility of advanced satellite-based quantum communications utilizing multi-dimensional encoding. Considering the use of satellite-to-Earth and inter-satellite configurations for quantum communications, we explore the use of multiple potential quantum information carriers as a means to enable the benefits of high-dimensional quantum encoding. We establish a realistic channel model to investigate the quantum state evolution within satellite-based quantum channels for each of the considered quantum information carriers, including the orbital angular momentum and the temporal modes of single photons, as well as the quadrature variables of optical fields. Applying our established channel models, we determine, via detailed evaluations including both theoretical analyses and numerical simulations, the performances of various multi-dimensional quantum information protocols utilizing different quantum information carriers for quantum encoding within the context of satellite-based quantum communications. The quantum information protocols we investigate include entanglement distribution, quantum key distribution, and quantum teleportation. For the practical deployment of satellite-based multi-dimensional quantum communications, we compare the performances of each considered quantum information protocol achieved with different quantum information carriers. Considering the fragility of multi-dimensional quantum states in the arduous environment of the Earth’s atmosphere, we further explore the probing of quantum channels and the use of real-time quantum channel information as a means to improve the feasibility and performance of satellite-based multi-dimensional quantum communications. Although not the core contribution of this thesis, we also explore the possibility of the simple integration of global quantum and wireless networks via the use of Terahertz frequencies for quantum communications within the context of micro-satellite constellations. This thesis provides novel and important insights into the development and implementation of advanced satellite-based quantum communications. Such insights should be very useful for the practical realization of a useful global-scale quantum Internet in the future

    Quantum Cryptography: Key Distribution and Beyond

    Get PDF
    Uniquely among the sciences, quantum cryptography has driven both foundational research as well as practical real-life applications. We review the progress of quantum cryptography in the last decade, covering quantum key distribution and other applications.Quanta 2017; 6: 1–47
    corecore