210,087 research outputs found

    Generalized Discernibility Function Based Attribute Reduction in Incomplete Decision Systems

    Get PDF
    A rough set approach for attribute reduction is an important research subject in data mining and machine learning. However, most attribute reduction methods are performed on a complete decision system table. In this paper, we propose methods for attribute reduction in static incomplete decision systems and dynamic incomplete decision systems with dynamically-increasing and decreasing conditional attributes. Our methods use generalized discernibility matrix and function in tolerance-based rough sets

    Approximations from Anywhere and General Rough Sets

    Full text link
    Not all approximations arise from information systems. The problem of fitting approximations, subjected to some rules (and related data), to information systems in a rough scheme of things is known as the \emph{inverse problem}. The inverse problem is more general than the duality (or abstract representation) problems and was introduced by the present author in her earlier papers. From the practical perspective, a few (as opposed to one) theoretical frameworks may be suitable for formulating the problem itself. \emph{Granular operator spaces} have been recently introduced and investigated by the present author in her recent work in the context of antichain based and dialectical semantics for general rough sets. The nature of the inverse problem is examined from number-theoretic and combinatorial perspectives in a higher order variant of granular operator spaces and some necessary conditions are proved. The results and the novel approach would be useful in a number of unsupervised and semi supervised learning contexts and algorithms.Comment: 20 Pages. Scheduled to appear in IJCRS'2017 LNCS Proceedings, Springe

    New Learning Models for Generating Classification Rules Based on Rough Set Approach

    Get PDF
    Data sets, static or dynamic, are very important and useful for presenting real life features in different aspects of industry, medicine, economy, and others. Recently, different models were used to generate knowledge from vague and uncertain data sets such as induction decision tree, neural network, fuzzy logic, genetic algorithm, rough set theory, and others. All of these models take long time to learn for a huge and dynamic data set. Thus, the challenge is how to develop an efficient model that can decrease the learning time without affecting the quality of the generated classification rules. Huge information systems or data sets usually have some missing values due to unavailable data that affect the quality of the generated classification rules. Missing values lead to the difficulty of extracting useful information from that data set. Another challenge is how to solve the problem of missing data. Rough set theory is a new mathematical tool to deal with vagueness and uncertainty. It is a useful approach for uncovering classificatory knowledge and building a classification rules. So, the application of the theory as part of the learning models was proposed in this thesis. Two different models for learning in data sets were proposed based on two different reduction algorithms. The split-condition-merge-reduct algorithm ( SCMR) was performed on three different modules: partitioning the data set vertically into subsets, applying rough set concepts of reduction to each subset, and merging the reducts of all subsets to form the best reduct. The enhanced-split-condition-merge-reduct algorithm (E SCMR) was performed on the above three modules followed by another module that applies the rough set reduction concept again to the reduct generated by SCMR in order to generate the best reduct, which plays the same role as if all attributes in this subset existed. Classification rules were generated based on the best reduct. For the problem of missing data, a new approach was proposed based on data partitioning and function mode. In this new approach, the data set was partitioned horizontally into different subsets. All objects in each subset of data were described by only one classification value. The mode function was applied to each subset of data that has missing values in order to find the most frequently occurring value in each attribute. Missing values in that attribute were replaced by the mode value. The proposed approach for missing values produced better results compared to other approaches. Also, the proposed models for learning in data sets generated the classification rules faster than other methods. The accuracy of the classification rules by the proposed models was high compared to other models

    An improved moth flame optimization algorithm based on rough sets for tomato diseases detection

    Get PDF
    Plant diseases is one of the major bottlenecks in agricultural production that have bad effects on the economic of any country. Automatic detection of such disease could minimize these effects. Features selection is a usual pre-processing step used for automatic disease detection systems. It is an important process for detecting and eliminating noisy, irrelevant, and redundant data. Thus, it could lead to improve the detection performance. In this paper, an improved moth-flame approach to automatically detect tomato diseases was proposed. The moth-flame fitness function depends on the rough sets dependency degree and it takes into a consideration the number of selected features. The proposed algorithm used both of the power of exploration of the moth flame and the high performance of rough sets for the feature selection task to find the set of features maximizing the classification accuracy which was evaluated using the support vector machine (SVM). The performance of the MFORSFS algorithm was evaluated using many benchmark datasets taken from UCI machine learning data repository and then compared with feature selection approaches based on Particle Swarm Optimization (PSO) and Genetic Algorithms (GA) with rough sets. The proposed algorithm was then used in a real-life problem, detecting tomato diseases (Powdery mildew and early blight) where a real dataset of tomato disease were manually built and a tomato disease detection approach was proposed and evaluated using this dataset. The experimental results showed that the proposed algorithm was efficient in terms of Recall, Precision, Accuracy and F-Score, as long as feature size reduction and execution time

    Fuzzy-Rough Sets Assisted Attribute Selection

    Get PDF
    Attribute selection (AS) refers to the problem of selecting those input attributes or features that are most predictive of a given outcome; a problem encountered in many areas such as machine learning, pattern recognition and signal processing. Unlike other dimensionality reduction methods, attribute selectors preserve the original meaning of the attributes after reduction. This has found application in tasks that involve datasets containing huge numbers of attributes (in the order of tens of thousands) which, for some learning algorithms, might be impossible to process further. Recent examples include text processing and web content classification. AS techniques have also been applied to small and medium-sized datasets in order to locate the most informative attributes for later use. One of the many successful applications of rough set theory has been to this area. The rough set ideology of using only the supplied data and no other information has many benefits in AS, where most other methods require supplementary knowledge. However, the main limitation of rough set-based attribute selection in the literature is the restrictive requirement that all data is discrete. In classical rough set theory, it is not possible to consider real-valued or noisy data. This paper investigates a novel approach based on fuzzy-rough sets, fuzzy rough feature selection (FRFS), that addresses these problems and retains dataset semantics. FRFS is applied to two challenging domains where a feature reducing step is important; namely, web content classification and complex systems monitoring. The utility of this approach is demonstrated and is compared empirically with several dimensionality reducers. In the experimental studies, FRFS is shown to equal or improve classification accuracy when compared to the results from unreduced data. Classifiers that use a lower dimensional set of attributes which are retained by fuzzy-rough reduction outperform those that employ more attributes returned by the existing crisp rough reduction method. In addition, it is shown that FRFS is more powerful than the other AS techniques in the comparative study

    Fuzzy-Rough Data Reduction with Ant Colony Optimization

    Get PDF
    Feature selection refers to the problem of selecting those input features that are most predictive of a given outcome; a problem encountered in many areas such as machine learning, pattern recognition and signal processing. In particular, solution to this has found successful application in tasks that involve datasets containing huge numbers of features (in the order of tens of thousands), which would be impossible to process further. Recent examples include text processing and web content classification. Rough set theory has been used as such a dataset pre-processor with much success, but current methods are inadequate at finding minimal reductions, the smallest sets of features possible. To alleviate this difficulty, a feature selection technique that employs a hybrid variant of rough sets, fuzzy-rough sets, has been developed recently and has been shown to be effective. However, this method is still not able to find the optimal subsets regularly. This paper proposes a new feature selection mechanism based on Ant Colony Optimization in an attempt to combat this. The method is then applied to the problem of finding optimal feature subsets in the fuzzy-rough data reduction process. The present work is applied to complex systems monitoring and experimentally compared with the original fuzzy-rough method, an entropy-based feature selector, and a transformation-based reduction method, PCA. Comparisons with the use of a support vector classifier are also included

    The usefulness of a machine learning approach to knowledge acquisition

    Get PDF
    This paper presents results of experiments showing how machine learning methods are useful for rule induction in the process of knowledge acquisition for expert systems. Four machine learning methods were used: ID3, ID3 with dropping conditions, and two options of the system LERS (Learning from Examples based on Rough Sets): LEM1 and LEM2. Two knowledge acquisition options of LERS were used as well. All six methods were used for rule induction from six real-life data sets. The main objective was to test how an expert system, supplied with these rule sets, performs without information on a few attributes. Thus an expert system attempts to classify examples with all missing values of some attributes. As a result of experiments, it is clear that all machine learning methods performed much worse than knowledge acquisition options of LERS. Thus, machine learning methods used for knowledge acquisition should be replaced by other methods of rule induction that will generate complete sets of rules. Knowledge acquisition options of LERS are examples of such appropriate ways of inducing rules for building knowledge bases
    corecore