24,475 research outputs found

    Positive region: An enhancement of partitioning attribute based rough set for categorical data

    Get PDF
    Datasets containing multi-value attributes are often involved in several domains, like pattern recognition, machine learning and data mining. Data partition is required in such cases. Partitioning attributes is the clustering process for the whole data set which is specified for further processing. Recently, there are already existing prominent rough set-based approaches available for group objects and for handling uncertainty data that use indiscernibility attribute and mean roughness measure to perform attribute partitioning. Nevertheless, most of the partitioning attribute methods for selecting partitioning attribute algorithm for categorical data in clustering datasets are incapable of optimal partitioning. This indiscernibility and mean roughness measures, however, require the calculation of the lower approximation, which has less accuracy and it is an expensive task to compute. This reduces the growth of the set of attributes and neglects the data found within the boundary region. This paper presents a new concept called the "Positive Region Based Mean Dependency (PRD)”, that calculates the attribute dependency. In order to determine the mean dependency of the attributes, that is acceptable for categorical datasets, using a positive region-based mean dependency measure, PRD defines the method. By avoiding the lower approximation, PRD is an optimal substitute for the conventional dependency measure in partitioning attribute selection. Contrary to traditional RST partitioning methods, the proposed method can be employed as a measure of data output uncertainty and as a tailback for larger and multiple data clustering. The performance of the method presented is evaluated and compared with the algorithmes of Information-Theoretical Dependence Roughness (ITDR) and Maximum Indiscernible Attribute (MIA)

    Clustering human perception of environment impact using Rough Set Theory

    Get PDF
    Rough set is a set theory which is have been applied in the many areas. One of them is in data mining. The utilization of feature selection and clustering methods, that are a part of data mining application, could contribute for decision support. This paper investigates the application of rough set theory to select attribute and cluster environment impact. The Maximum Dependency Attribute (MDA) and fuzzy partition based on indiscernible relation are used to select the most important impact and cluster the object using the selected attributes, respectively. The data are collected from the field survey at identifying the environmental impact experienced by several communities in Yogyakarta, Indonesia. The results show that the water quality is the important attribute on physical and chemical aspects. Furthermore, on economic aspect, the highest attributes are immigration and employee absorption. Moreover, the number of cluster recommended is 9 based on the silhouette coefficient which is rising 0.9. This paper can be used to make recommendation to improve the quality of social environment

    New rough set based maximum partitioning attribute algorithm for categorical data clustering

    Get PDF
    Clustering a set of data into homogeneous groups is a fundamental operation in data mining. Recently, consideration has been put on categorical data clustering, where the data set consists of non-numerical attributes. However, implementing several existing categorical clustering algorithms is challenging as some cannot handle uncertainty while others have stability issues. The Rough Set theory (RST) is a mathematical tool for dealing with categorical data and handling uncertainty. It is also used to identify cause-effect relationships in databases as a form of learning and data mining. Therefore, this study aims to address the issues of uncertainty and stability for categorical clustering, and it proposes an improved algorithm centred on RST. The proposed method employed the partitioning measure to calculate the information system's positive and boundary regions of attributes. Firstly, an attributes partitioning method called Positive Region-based Indiscernibility (PRI) was developed to address the uncertainty issue in attribute partitioning for categorical data. The PRI method requires the positive and boundary regions-based partitioning calculation method. Next, to address the computational complexity issue in the clustering process, a clustering attribute selection method called Maximum Mean Partitioning (MMP) is introduced by computing the mean. The MMP method selects the maximum degree of the mean attribute, and the attribute with the maximum mean partitioning value is chosen as the best clustering attribute. The integration of proposed PRI and MMP methods generated a new rough set hybrid clustering algorithm for categorical data clustering algorithm named Maximum Partitioning Attribute (MPA) algorithm. This hybrid algorithm is an all-inclusive solution for uncertainty, computational complexity, cluster purity, and higher accuracy in attribute partitioning and selecting a clustering attribute. The proposed MPA algorithm is compared against the baseline algorithms, namely Maximum Significance Attribute (MSA), Information-Theoretic Dependency Roughness (ITDR), Maximum Indiscernibility Attribute (MIA), and simple classical K-Mean. In addition, seven small data sets from previously utilized research cases and 21 UCI repository and benchmark datasets are used for validation. Finally, the results were presented in tabular and graphical form, showing the proposed MPA algorithm outperforms the baseline algorithms for all data sets. Furthermore, the results showed that the proposed MPA algorithm improves the rough accuracy against MSA, ITDR, and MIA by 54.42%. Hence, the MPA algorithm has reduced the computational complexity compared to MSA, ITDR, and MIA with 77.11% less time and 58.66% minimum iterations. Similarly, a significant percentage improvement, up to 97.35%, was observed for overall purity by the MPA algorithm against MSA, ITDR, and MIA. In addition, the increment up to 34.41% of the overall accuracy of simple K-means by MPA has been obtained. Hence, it is proven that the proposed MPA has given promising solutions to address the categorical data clustering problem

    Autonomous clustering using rough set theory

    Get PDF
    This paper proposes a clustering technique that minimises the need for subjective human intervention and is based on elements of rough set theory. The proposed algorithm is unified in its approach to clustering and makes use of both local and global data properties to obtain clustering solutions. It handles single-type and mixed attribute data sets with ease and results from three data sets of single and mixed attribute types are used to illustrate the technique and establish its efficiency

    A comparative study of the AHP and TOPSIS methods for implementing load shedding scheme in a pulp mill system

    Get PDF
    The advancement of technology had encouraged mankind to design and create useful equipment and devices. These equipment enable users to fully utilize them in various applications. Pulp mill is one of the heavy industries that consumes large amount of electricity in its production. Due to this, any malfunction of the equipment might cause mass losses to the company. In particular, the breakdown of the generator would cause other generators to be overloaded. In the meantime, the subsequence loads will be shed until the generators are sufficient to provide the power to other loads. Once the fault had been fixed, the load shedding scheme can be deactivated. Thus, load shedding scheme is the best way in handling such condition. Selected load will be shed under this scheme in order to protect the generators from being damaged. Multi Criteria Decision Making (MCDM) can be applied in determination of the load shedding scheme in the electric power system. In this thesis two methods which are Analytic Hierarchy Process (AHP) and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) were introduced and applied. From this thesis, a series of analyses are conducted and the results are determined. Among these two methods which are AHP and TOPSIS, the results shown that TOPSIS is the best Multi criteria Decision Making (MCDM) for load shedding scheme in the pulp mill system. TOPSIS is the most effective solution because of the highest percentage effectiveness of load shedding between these two methods. The results of the AHP and TOPSIS analysis to the pulp mill system are very promising

    Rule Extraction by Genetic Programming with Clustered Terminal Symbols

    Get PDF
    When Genetic Programming (GP) is applied to rule extraction from databases, the attributes of the data are often used for the terminal symbols. However, in the case of the database with a large number of attributes, the search space becomes vast because the size of the terminal set increases. As a result, the search performance declines. For improving the search performance, we propose new methods for dealing with the large-scale terminal set. In the methods, the terminal symbols are clustered based on the similarities of the attributes. In the beginning of search, by reducing the number of terminal symbols, the rough and rapid search is performed. In the latter stage of search, by using the original attributes for terminal symbols, the local search is performed. By comparison with the conventional GP, the proposed methods showed the faster evolutional speed and extracted more accurate classification rules

    Change detection in categorical evolving data streams

    Get PDF
    Detecting change in evolving data streams is a central issue for accurate adaptive learning. In real world applications, data streams have categorical features, and changes induced in the data distribution of these categorical features have not been considered extensively so far. Previous work on change detection focused on detecting changes in the accuracy of the learners, but without considering changes in the data distribution. To cope with these issues, we propose a new unsupervised change detection method, called CDCStream (Change Detection in Categorical Data Streams), well suited for categorical data streams. The proposed method is able to detect changes in a batch incremental scenario. It is based on the two following characteristics: (i) a summarization strategy is proposed to compress the actual batch by extracting a descriptive summary and (ii) a new segmentation algorithm is proposed to highlight changes and issue warnings for a data stream. To evaluate our proposal we employ it in a learning task over real world data and we compare its results with state of the art methods. We also report qualitative evaluation in order to show the behavior of CDCStream
    • 

    corecore