1,888 research outputs found

    Crop and soil organic matter simulation models – A brief review of their basic features and application in sub-Saharan Africa

    Get PDF
    Over the past decades, numerous crop-soil models have been developed to represent dynamic processes in cropland systems, including soil organic carbon (SOC) dynamics (Campbell and Paustian, 2015). These models use mathematical equations that determine carbon allocation in the vegetation and biomass and soils to represent biogeochemical processes, such as photosynthesis, respiration and decomposition. Furthermore, a range of crop management practices are represented in most of the models, enabling an assessment of their impacts on SOC in agricultural systems. Although models were initially developed for research purposes, they are increasingly becoming important in many aspects of environmental policies (Manlay et al., 2007). Extensively tested models provide effective tools that can be used in identifying sustainable land management practices across different agroecological conditions. Compared to field experiments, which are time and resource consuming, models are more effective for making predictions and understanding crop and SOC dynamics on large scales and different time scales. However, the choice of the model depends on the ability of the model to simulate key processes in the region of interest. We conducted a survey to identify the features of the commonly used crop-soil models in order to inform the choices for application in sub-Saharan Africa. The survey was administered online to the model developers. In addition, we also conducted a literature search to assess the usage of the different models in different parts of sub-Saharan. In this brief, we provide a basic summary of the information from the survey and literature review

    The Impact of Treatment of Organic Manures on Future Soil Carbon Sequestration Under Different Tillage Systems in Pakistan

    Get PDF
    Funds provided by Higher Education Commission (HEC) of Pakistan for carrying out this Ph.D. research work under “Indigenous 5000 Fellowship Program” and “International Research Support Initiative Program” are highly acknowledged.Peer reviewedPublisher PD

    Simulating microbial degradation of organic matter in a simple porous system using the 3-D diffusion-based model MOSAIC

    Get PDF
    This paper deals with the simulation of microbial degradation of organic matter in soil within the pore space at a microscopic scale. Pore space was analysed with micro-computed tomography and described using a sphere network coming from a geometrical modelling algorithm. The biological model was improved regarding previous work in order to include the transformation of dissolved organic compounds and diffusion processes. We tested our model using experimental results of a simple substrate decomposition experiment (fructose) within a simple medium (sand) in the presence of different bacterial strains. Separate incubations were carried out in microcosms using five different bacterial communities at two different water potentials of −10 and −100 cm of water. We calibrated the biological parameters by means of experimental data obtained at high water content, and we tested the model without changing any parameters at low water content. Same as for the experimental data, our simulation results showed that the decrease in water content caused a decrease of mineralization rate. The model was able to simulate the decrease of connectivity between substrate and microorganism due the decrease of water content

    What is the potential for biogas digesters to improve soil carbon sequestration in Sub-Saharan Africa? Comparison with other uses of organic residues

    Get PDF
    Acknowledgments We are very grateful to the UK Department for International Development (DFID) New and Emerging Technologies Research Call for funding this work. PS is a Royal Society-Wolfson Research Merit Award holder.Peer reviewedPostprin

    Evaluation of Parametric Limitations in Simulating Greenhouse Gas Fluxes from Irish Arable Soils Using Three Process-Based Models

    Get PDF
    The senior author gratefully acknowledges the funding by the Science, Technology, Research and Innovation for the Environment (STRIVE) Programme of the Irish Government under the National Development Plan 2007-2013 and the Department of the Environment, Heritage and Local Government. The authors would like to thanks Phillip O’Brien (EPA) for extending technical and relevant support; Mike Williams, Mike Jones and Matt Saunders (TCD), Komsan Rueangritsarakul and Mohamed Helmy (UCD) for supplying experimental data for modelling work; as well as Tom Bolger and Tommy Gallagher (UCD) for providing administrative support.Peer reviewe

    MODELING REGIONAL ALTERNATIVE MANAGEMENT SCENARIOS WITH FUTURE CLIMATIC CHANGE INFLUENCE ACCOUNTING

    Get PDF
    The methodology of construction of the alternative agricultural production scenarios at regional level includes profitability and feasibility analysis based on assessment the effect of global climate change on productivity parameters for the main agricultural crops, cost efficiency of crop growing and cattle breeding. To propose links between economic adaptation to climate change and carbon (organic C) stock management in agricultural ecosystems for use in developing long-term adoption strategies at regional level, the regional economic-mathematical model was elaborated. It allows us to unify soil C driving variables and human environment factors.Regional Economic-Mathematical Model, Regional Alternative Management Scenarios, Climate change, Linear Programming Task, Model of humus balance, European Russia, Crop Production/Industries, Environmental Economics and Policy, Livestock Production/Industries, Research Methods/ Statistical Methods,

    Evaluation of the ECOSSE model to predict heterotrophic soil respiration by direct measurements

    Get PDF
    Acknowledgements This work contributes to the ELUM (Ecosystem Land Use Modelling & Soil Carbon GHG Flux Trial) project, which was commissioned and funded by the Energy Technologies Institute (ETI), and to Carbo-BioCrop (http://www.carbobiocrop.ac.uk; a NERC funded project; NE/H010742/1), UKERC Phase II and III (NERC; NE/H013237/1), MAGLUE (http://www.maglue.ac.uk; an EPSRC funded project; EP/M013200/1) and as part of the Seventh Framework For Research Programme of the EU, within the EUROCHAR project (N 265179) and EXPEER within WU FP7-Infrastructures. We acknowledge the use of the E-OBS dataset from the EU-FP6 project ENSEMBLES (http://ensembles-eu.metoffice.com) and the data providers in the ECA&D project (http://www.ecad.eu). We thank two anonymous reviewers and Dr William van Dijk for their valuable suggestions.Peer reviewedPostprin
    corecore