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Summary 20 

This paper aims to evaluate the suitability of the ECOSSE model to estimate soil 21 

heterotrophic respiration (Rh) from arable land, and short rotation coppices of poplar 22 

and willow. Between  2011 and 2013, we measured Rh with automatic closed 23 

dynamic chambers on root exclusion plots at one site in the United Kingdom (willow, 24 

mixed commercial genotypes of Salix spp.) and two sites in Italy (arable and poplar, 25 

Populus x Canadensis Moench, Oudemberg genotype), and compared these measured 26 

fluxes to simulated values of Rh with the ECOSSE model. Correlation coefficients (r) 27 

between modelled and measured monthly Rh data were strong and significant with a 28 

range between 0.81 and 0.96 for all three types of vegetation. There was no significant 29 

error and bias in the model for any site. The model was able to predict seasonal trends 30 

in Rh at all three sites even though it occasionally underestimated the flux values 31 

during warm weather in spring and summer. Because of the strong correlation 32 

between the measured and modelled values, it is unlikely that underestimation of the 33 

flux is the result of missing processes in the model. Therefore, further detailed 34 

monitoring of Rh is needed to modify the model. In this research, a limited set of input 35 

data was used to simulate Rh at the three sites. Nevertheless, overall results of the 36 

model evaluation suggest that the ECOSSE model simulates soil Rh adequately under 37 

all land uses tested and that continuous and direct measurements (such as automatic 38 

chambers installed on root-exclusion plots) are a useful tool to test model 39 

performance to simulate Rh at the site level. 40 
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• Model evaluation is crucial to predict soil carbon balance accurately. 45 

• Modelled and measured heterotrophic respiration were compared for three 46 

land uses. 47 

• The model performed well statistically for all three vegetation types. 48 

• Modelled heterotrophic respiration should be evaluated by comparison to 49 

continuous measurements. 50 

 51 

Introduction 52 

Globally, the soil releases around 60 Gt of carbon (C) to the atmosphere each year 53 

through soil-surface carbon dioxide (CO2) efflux, which is a major component of the 54 

global fluxes of CO2 (Giardina et al., 2014). It is, therefore, an important regulator of 55 

climate change as well as a determinant of the terrestrial C balance (Yan et al., 2015). 56 

Soil respiration (Rs) is generally expressed as the sum of soil CO2 efflux from 57 

both root respiration (autotrophic respiration, Ra) and organic C and the 58 

mineralization and decomposition of litter (heterotrophic respiration, Rh; Bowden et 59 

al., 1993). Several methods have been used to separate Ra and Rh from the overall Rs, 60 

under both laboratory and field conditions, and over a range of spatial and temporal 61 

scales (Subke et al., 2006). Separation of Rs into Ra and Rh is important to understand 62 

the processes that underlie total Rs, and to enable predictions of soil C under changing 63 

environmental conditions such as climate and land-use type. Ryan & Law (2005) 64 

grouped the methods to separate autotrophic and heterotrophic contributions into four 65 

categories: (i) comparison of Rs determined from soil with roots excluded (usually by 66 

trenching) and intact soil, (ii) summation of the individual components of root 67 

respiration and litter decomposition, (iii) stable or radioactive isotope methods to 68 

determine the origin of the C and (4) ring barking around a tree’s circumference 69 
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(girdling) of the cambium, which cuts off the supply of photosynthates to roots. 70 

Several authors have reviewed the advantages and disadvantages of all these 71 

approaches for determining autotrophic and heterotrophic contributions to Rs 72 

(Kuzyakov, 2006; Subke et al., 2006). These authors showed that the most reliable 73 

methods for the separation of Rs into its constituent parts are based on stable isotope 74 

techniques because they involve less disturbance to the soil–plant system than root 75 

exclusion or component integration techniques (Kuzyakov, 2006). The bomb-14C 76 

approach allows CO2 sources to be separated with the least disturbance, but the large 77 

costs of analysis and some uncertainties limit its application. In field experiments, 78 

where high costs limit the use of isotope approaches, the root exclusion techniques 79 

have been shown to produce accurate separation of Rs into the plant and soil 80 

components (Rochette et al., 1999). Because of the considerable heterogeneity and 81 

inaccessibility of the soil medium and high cost of measurement instruments, Rs, and 82 

its subdivision into Ra and Rh, remains the least well quantified component of the 83 

terrestrial C cycle (Trumbore, 2006). With these constraints, regional and global 84 

estimates of Rs are imprecise, and modelling is critical to make progress in this area. 85 

Several multi-pool models, such as RothC (Coleman & Jenkinson, 2005) and 86 

ECOSSE (Smith et al., 2010a) have been developed over the last decade to describe 87 

both short- and long-term responses of soil C to land use and changes in the climate. 88 

In general, all multi-pool models are conceptually similar: organic litter entering the 89 

soil is divided into pools of different decomposability. During decomposition of the 90 

litter pools, several C pools of organic matter are formed in the mineral soil with 91 

different turnover times. Decomposed soil C is either transferred into one or more 92 

pools or is released as CO2. Decomposition of the C pools is typically described by 93 
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first-order kinetics, which implies that the amount of heterotrophic biomass does not 94 

directly affect the decomposition rate of organic matter pools (Bauer et al., 2008). 95 

The ECOSSE (estimation of carbon in organic soils–sequestration and emissions)  96 

model was developed to simulate the C and nitrogen (N) cycles and greenhouse gas 97 

(GHG) fluxes with minimal input data for both mineral and organic soil (Smith et al., 98 

2010a,b). The ECOSSE model is based on principles used initially for mineral soil in 99 

the two ‘mother’ models, RothC and SUNDIAL (Smith & Glendining, 1996). The 100 

ECOSSE model follows these established models and uses a pool-type approach, 101 

which describe the soil organic matter (SOM) as pools of inert organic matter, humus, 102 

biomass, resistant plant material (RPM) and decomposable plant material (DPM; 103 

Smith et al., 2010a,b). During the decomposition process, material is exchanged 104 

between the SOM pools according to first-order rate equations, characterized by a 105 

specific rate constant for each pool that depends on temperature, moisture, vegetation 106 

cover and soil pH. 107 

Previous evaluations have determined the accuracy of ECOSSE simulations to 108 

predict soil C after land-use change to short rotation forestry (Dondini et al., 2015), 109 

Miscanthus and short rotation coppice willow (Dondini et al., 2016a). The modelled 110 

C under short rotation forestry showed a strong correlation with the soil C 111 

measurements at both 0–30 cm (correlation coefficient, r = 0.93) and 0–100 cm soil 112 

depth (r = 0.82, Dondini et al., 2015). Dondini et al. (2016a) also reported a strong 113 

correlation between modelled and measured soil organic C (SOC) after transition to 114 

Miscanthus and short rotation coppice-willow at two soil depths (0–30 and 0–100 115 

cm), as well as the absence of significant bias in the model.  116 

The ECOSSE model was also evaluated against soil nitrous oxide (N2O) 117 

emissions from cropland sites in Europe (Smith et al., 2010b; Bell et al., 2012; Khalil 118 
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et al., 2013), CO2 emissions from peatlands (Abdalla et al., 2014) and all GHG fluxes 119 

under bioenergy and conventional crops (Dondini et al., 2016b). Previous evaluations 120 

of simulated CO2 emissions compared model outputs against the Rh derived from soil 121 

chamber and eddy covariance (EC) measurements. There were strong correlations 122 

between modelled and measured Rh at different sites in the UK (Dondini et al., 123 

2016b) and Europe (Abdalla et al., 2014), but both of these approaches have their 124 

limitations. The Rh derived from the soil chamber measurements was estimated from 125 

periodic measurements of Rs, therefore, the degree of coincidence between measured 126 

and modelled Rh was also related to the Rh:Rs ratio adopted (Dondini et al., 2016b). 127 

The Rh derived from EC measurements was estimated from the measured ecosystem 128 

respiration (Reco) during daytime, which is a modelled flux driven by air temperature 129 

and other environmental factors (Dondini et al., 2016b). Therefore, further evaluation 130 

by comparison of the model output with direct measurements of soil Rh is needed to 131 

demonstrate further the ability of the ECOSSE model to predict such a flux 132 

adequately. 133 

In this paper we evaluate the suitability of the ECOSSE model for estimating soil 134 

Rh at three independent sites that represent three different vegetation types, namely 135 

willow, poplar and arable land. Measured input data were used to initialize the model. 136 

At each site, automatic dynamic (non-steady state through flow) closed chambers 137 

were installed on field plots where roots had been excluded by the trenching method. 138 

This measurement technique provides continuous and direct measurements of Rh and 139 

therefore enables a more accurate evaluation of the performance of the model than 140 

methods that use discontinuous measurements. Our research hypothesis was that the 141 

soil Rh estimated by the ECOSSE model is statistically comparable to the measured 142 

Rh at the three study sites. 143 
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Materials and methods 144 

ECOSSE model 145 

The ECOSSE model simulates soil C and N dynamics in both mineral and organic 146 

soil. All of the major processes of C and N turnover in soil are included in the model, 147 

but each of the processes is simulated by simple equations and using readily available 148 

input variables. This enables the model to be developed from a field based model to a 149 

national scale tool, without great loss of accuracy (Smith et al., 2010a,b,c). 150 

The ECOSSE model describes SOM by the following five pools: inert organic 151 

matter, humus (HUM), biomass (BIO), RPM and DPM. Each pool decomposes with a 152 

specific rate constant, except for the inert organic matter which is not affected by 153 

decomposition. The rate constants used are those given in RothC: for HUM = 0.02 154 

year-1, for BIO = 0.66 year-1, for RPM = 0.3 year-1 and DPM = 10 year-1. 155 

The ECOSSE model simulates the soil profile to a depth of 3 m; it divides the soil 156 

into 5-cm layers to simulate soil processes accurately with depth. Plant C and N 157 

inputs are added monthly to the DPM and RPM pools. During the decomposition 158 

process, material is exchanged between the SOM pools according to first-order 159 

equations, characterized by a specific decomposition rate for each pool. The 160 

decomposition rate of each pool is modified by temperature, water content, plant 161 

cover and pH of the soil (with additional modifiers that depend upon soil bulk density 162 

and inorganic N concentration in the case of anaerobic decomposition; Smith et al., 163 

2010c). The decomposition process results in Rh and gaseous losses of methane 164 

(CH4); Rh dominates under aerobic conditions and CH4 losses under anaerobic 165 

conditions. In ECOSSE, CH4 emissions are calculated as the difference between CH4 166 

production and oxidation. Methane production during anaerobic decomposition is 167 

simulated by a similar pool approach to that used for aerobic decomposition. The 168 
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difference between the rates of aerobic and anaerobic decomposition is simulated by 169 

the different functions used to calculate the rate modifiers, which account for changes 170 

in soil moisture, temperature, pH and water availability. ECOSSE also simulates the 171 

oxidation of atmospheric CH4, which, under aerobic conditions, can lead to the soil 172 

being a net consumer of CH4 (Smith et al., 2010c). 173 

The N content of the soil follows the decomposition of SOM, with a stable C:N 174 

ratio defined for each SOM pool at a given pH, and N is either mineralized or 175 

immobilized to maintain that ratio. Nitrogen is released from decomposing SOM as 176 

ammonium (NH4
+) and may then be immobilized or nitrified to nitrate (NO3

-). Carbon 177 

and N may be lost from the soil by the processes of leaching  NO3
-, dissolved organic 178 

C and dissolved organic N, nitrification and denitrification to nitric oxide (NO) and 179 

N2O, volatilization of ammonia or plant assimilation of NO3
- and NH4

+. Carbon and N 180 

may be returned to the soil by plant input, application of inorganic fertilizers, 181 

atmospheric deposition or organic amendments (e.g. manure, crop residues). More 182 

detail on the structure and parameters of the model are given in Smith et al. (2010a,c).  183 

Vegetation inputs to the soil are estimated by a modification of the Miami model 184 

(Lieth, 1973), a simple model that links the net primary production (NPP) to annual 185 

mean temperature and total precipitation. For a full description of the ECOSSE model 186 

and the plant input estimates refer to Smith et al. (2010a) and Dondini et al. (2016a). 187 

The minimum input requirements of the ECOSSE model for site-specific 188 

simulations are: 189 

• 30-year average monthly rainfall (mm) and temperature (°C), 190 

• Monthly rainfall (mm), temperature (°C) and potential evapotranspiration 191 

(PET; mm), 192 

• Initial soil C content (kg ha-1),  193 
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• Soil depth at which soil properties have been measured (cm), 194 

• Soil sand, silt and clay content (%),  195 

• Soil bulk density (g cm-3),  196 

• Soil pH, 197 

• Crop type for each simulation year. 198 

 199 

Initialization of the model is based on the assumption that the soil is at a steady 200 

state under the initial land use at the start of the simulation (Smith et al., 2010a). 201 

Therefore, the model uses a ‘spin-up’ approach to adjust plant inputs until measured 202 

and simulated values of SOC converge. More detail on model initialization is given in 203 

Dondini et al. (2016b). 204 

 205 

Data and flux measurements 206 

In 2012–2013, one willow (mixed commercial genotypes of SRC willow, Salix spp.) 207 

site and one poplar (Populus x Canadensis Moench, Oudemberg genotype) site were 208 

chosen for sampling in the UK and Italy, respectively. The poplar trees were planted 209 

originally in 2010 and were last harvested in March 2012, a month before the start of 210 

the measurement period. The willow site was converted from grassland in 2008 and 211 

harvested in March 2009. An arable site was sampled in Italy in 2011–2012. The 212 

latter site had been under irrigated maize (Zea mays L.) monoculture for the previous 213 

30 years, but in 2007 crop rotation was introduced with  three years (2007–2009) of 214 

alfalfa (Medicago sativa L.), one year of maize (2010), one year (2011) of soya beans 215 

(Glycine max Merr.) followed by  maize (2012). Management of the soil also changed 216 

in 2007 from ploughing to minimum tillage cultivation. The willow site and the 217 

measurements made there contribute to the ELUM (Ecosystem Land Use Modelling 218 
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& Soil Carbon GHG Flux Trial) project (Harris et al., 2014). The poplar site and 219 

measurements made there contributed to the EU-FP7 project EuroChar (Biochar for 220 

Carbon Sequestration and Large-Scale Removal of GHG from the Atmosphere; 221 

Ventura et al., 2015). The arable site and measurements made there contributed to the 222 

National Research Programme ‘CarboItaly’ (Alberti et al., 2010). 223 

At the beginning of each experiment, three sampling plots per field were selected 224 

randomly, and three soil cores were taken within each sampling plot. At the poplar 225 

and arable sites, soil samples were collected to a depth of 40 and 60 cm, respectively, 226 

whereas soil samples at the willow site were collected to a depth of 1 m. All soil 227 

samples were sieved to pass through a 2-mm sieve; a subsample of the sieved soil was 228 

oven-dried (105 °C for 12 hours) and subsequently ball-milled (Fritsch Planetary Mill, 229 

Idar-Oberstein, Germany). The soil samples were analysed for percentage carbon 230 

(%C) with a LECO TruSpec CN analyser (Leco, TruSpec CN, St. Joseph, MI, USA), 231 

bulk density, particle-size distribution and pH (Table 1). The measurements of the soil 232 

properties of the three soil samples were averaged for each site and were used as 233 

inputs to the model.  234 

At each sampling plot, the trenching method was used to measure Rh as explained 235 

in Alberti et al. (2010) for the arable site and in Ventura et al. (2015) for the poplar 236 

and willow sites. At the poplar site, three trenched subplots (50 cm × 50 cm) were 237 

established by digging trenches 60–cm deep and 15-cm wide in the central part of 238 

each plot in February 2012, in the middle of two planted rows. Before the trenches 239 

were refilled with the original soil, each subplot was isolated with a geotextile canvas 240 

(Typar®, Dupont, Wilmington, DE, USA) to prevent root growth into the trenched 241 

subplot, but to  allow gas and water exchange. At the willow site, the trenched 242 

subplots were isolated in February 2012 by a root exclusion stainless-steel pipe (32-243 
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cm diameter, 40-cm height). At the arable site, as part of a long-term monitoring 244 

experiment started in 2007 (Alberti et al., 2010), the trenched subplots were prepared 245 

every year with the same  stainless-steel pipe used at the willow site; they were 246 

inserted into the soil  before sowing and removed just before the crop was harvested. 247 

At each site, Rh was measured using six automated closed dynamic chambers 248 

(two per plot). Each chamber, placed over a collar inserted into the soil for 3–4 cm, 249 

has a base area of 196 cm2 and a free headspace volume of around 2000 cm3. To 250 

avoid a wind induced pressure difference between the inside and outside of the 251 

chamber, a pressure vent was built following Xu et al. (2006) and placed on the top of 252 

the chamber. The deployment time (i.e. after the chamber’s lid closure) was 120 s. A 253 

pump circulated the air from the chamber to an infra-red gas analyser in a closed 254 

system (IRGA, SBA4 PP-Systems, Amesbury, MA, USA); CO2 concentration, vapour 255 

partial pressure and total air pressure data were recorded every 1.6 s. The chambers 256 

were operated sequentially by a CR1000 (Campbell Scientific, Logan, UT, USA) data 257 

logger. More detail on the soil respiration systems and how Rh fluxes were computed 258 

are described in Delle Vedove et al. (2007), Alberti et al. (2010) and Delle Vedove et 259 

al. (2015). At the willow and poplar sites, the sampling frequency was every 2 and 4 260 

hours, respectively. At the arable site, the measurement frequency was every 2 hours.  261 

The Rh data presented in this study were collected at the willow site from May 262 

2012 to September 2013, at the poplar site from April 2012 to November 2013 and at 263 

the arable site from January 2012 to December 2013. Because of a technical 264 

malfunction of the chamber equipment, Rh data were not collected in October 2012–265 

February 2013 and in July 2013 at the willow site, in June–July 2013 at the poplar site 266 

and in March–April 2011 at the arable site. 267 
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At each location, monthly air temperature and precipitation for the 30 years 268 

before measurements started were used to calculate long-term averages (Table 2), 269 

which were used as input to the model. Air temperature and precipitation data were 270 

extracted from the E-OBS gridded dataset from the EU-FP6 project ENSEMBLES, 271 

provided by the ECA&D project (Haylock et al., 2008). This dataset is known as E-272 

OBS and is publicly available (http://eca.knmi.nl/). At each site, air temperature and 273 

precipitation were recorded during the entire study period and monthly values were 274 

used as input to the model. The arable site was irrigated between June and August 275 

2011 (276 mm) and in the same period of 2012 (269 mm); irrigation was included in 276 

the model by adding the water used for irrigation to the monthly precipitation. No 277 

irrigation was used at the other two sites. Monthly PET was estimated by the 278 

Thornthwaite method (Thornthwaite, 1948), which has been used in other modelling 279 

studies when directly observed data have not been available (e.g. Smith et al., 2005; 280 

Dondini et al., 2015). 281 

 282 

Model evaluation and statistical analysis 283 

The aim of this research was to evaluate the ability of the ECOSSE model to predict 284 

Rh under different vegetation types; therefore, no model parameters or processes were 285 

implemented with the measurements taken at the three experimental sites. Instead, the 286 

model was evaluated with field data, i.e. independent data not used for developing the 287 

model. 288 

At each site, measured soil C, bulk density, particle-size distribution, pH and 289 

meteorological data were used as inputs to run the ECOSSE model (see above for 290 

input details). Values of soil variables were available for different soil depths at the 291 

three sites (Table 1); therefore, the modelled Rh values represent fluxes released at the 292 
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soil surface from the upper 40-cm depth at the poplar site, from the upper 60-cm 293 

depth at the arable site and from 100-cm depth at the willow site. 294 

Monthly simulations of soil Rh fluxes at the soil surface were evaluated against mean 295 

monthly chamber measurements, also recorded at the soil surface.   296 

The Shapiro–Wilk’s test for normality was used to test the distribution of the 297 

measured Rh values at each site with the IBM SPSS Statistics software, Version 24.0. 298 

This test failed to reject the null hypothesis of normality for the willow data (P = 299 

0.614), but it did reject the null hypothesis of normality for the poplar and arable data 300 

(P = 0.021 and P = <0.0001, respectively; Figure 1a). For each dataset, a general 301 

linear model was used to determine the residuals of the difference between the 302 

measured Rh values and the sample mean. These residuals were also tested for 303 

normality by the Shapiro–Wilk’s test, and the null hypothesis of normality was again 304 

rejected for the arable and poplar data (P = 0.021 and P = <0.0001, respectively; 305 

Figure 1b). Therefore, the arable and poplar data were transformed with the Box–Cox 306 

transformation. This transformation (Box & Cox, 1964) represents a family of power 307 

transformations that incorporates and extends the traditional options (e.g. square root, 308 

cube root, fourth root, natural logarithm, reciprocal square root transformations) to 309 

find the optimal normalizing transformation for each variable. The procedure 310 

identifies an appropriate exponent, Lambda, to transform data to a normal 311 

distribution. The Lambda value indicates the power to which all data should be raised. 312 

To do this, the Box–Cox power transformation searches for Lambda from –5 to +5 313 

until the best value is found. In our study, this transformation suggested a Lambda 314 

value of 0.5 (i.e. the square root of the original data) and 0 (i.e. the natural logarithm 315 

of the original data) for transformation of Rh values at the poplar and the arable sites, 316 

respectively. The Shapiro–Wilk’s test for normality was again used to test the 317 
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distribution of the transformed data and of the residuals of the difference between the 318 

transformed data and the sample mean. For both datasets (i. e. poplar and arable), the 319 

tests failed to reject the null hypothesis of normality for the transformed data and 320 

residuals (P = 1.0 for all datasets analysed; Figure 1c,d). On the basis of these results, 321 

the statistical evaluation of the model performance to simulate Rh was done on the 322 

transformed Rh data for the poplar and arable sites and on non-transformed Rh data for 323 

the willow site.  324 

A quantitative statistical analysis was undertaken to determine the degree of 325 

coincidence and association between measured and modelled Rh values, following the 326 

approach described in Smith et al. (1997) and Smith & Smith (2007). The analysis of 327 

association defines how well trends in the measured values relate to those that are 328 

simulated, and the analysis of coincidence determines the differences between the 329 

simulated and measured values. 330 

The degree of association between modelled and measured Rh values was 331 

determined with the sample correlation coefficient, r (Chatfield, 1983). The 332 

significance of the association between simulated values and measurements was 333 

determined by the F-test (Armitage et al., 2002). The value of F was calculated by: 334 

 𝐹𝐹 = (𝑛𝑛−2) × 𝑟𝑟2

(1− 𝑟𝑟2)
 ,                                                                       (1) 335 

where n is the number of measured and simulated pairs being compared and r is the 336 

sample correlation coefficient (Smith & Smith, 2007). The value of F was related to 337 

the probability that the measured and simulated values were not associated by 338 

comparing to the P-values (P = 0.05) of the F distribution. If F > F-value at (P = 339 

0.05) the association between modelled and measured values was considered 340 

statistically significant. 341 
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The analysis of coincidence between the simulated and measured values was 342 

determined from the total difference, the bias in the total difference and the goodness-343 

of-fit between simulated and measured values. The total difference between the 344 

simulated and measured values was calculated as the root mean squared error (RMSE; 345 

Loague & Green, 1991). The statistical significance of the total difference between 346 

the simulated and measured Rh was assessed by comparing the RMSE to the value 347 

obtained assuming a deviation corresponding to the 95% confidence interval of the 348 

replicated measurements (RMSE95). If the relative error RMSE < RMSE95 indicates 349 

that the simulated values fall within the 95% confidence interval of the measurements, 350 

the model cannot be improved further with these data (Smith & Smith, 2007).  351 

The bias in the total difference between simulated and measured values was 352 

determined by calculating the relative error, E (Addiscott & Whitmore, 1987): 353 

𝐸𝐸 =  100
𝛰𝛰�

× ∑ (Oi−Pi)𝑛𝑛
𝑖𝑖=1

𝑛𝑛
,                                                                       (2) 354 

where 𝛰𝛰� is the average of all measurements, Oi is the ith measured value, Pi is the ith 355 

simulated value and n is the total number of values being compared. 356 

The significance of E was determined again by comparing its value to that 357 

obtained assuming a deviation corresponding to the 95% confidence interval of the 358 

measurements (E95). If E < E95 it indicates that the bias in the simulation is less than 359 

the 95% confidence interval of the measurements, and the model bias cannot be 360 

reduced further with these data (Smith & Smith, 2007). 361 

The lack of fit statistic, LOFIT (Whitmore, 1991), was used to assess the 362 

goodness-of-fit between simulated and measured values. Assuming experimental 363 

errors to be random, this statistic enables the experimental errors to be distinguished 364 

from the failure of the model. The significance of LOFIT was determined with an F-365 

test; in accord with statistical convention, a value of F greater than the critical 5% F-366 
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value was taken to indicate that the total error in the simulated values was 367 

significantly greater than the error inherent in the measured values. 368 

 369 

Results and discussion 370 

Model evaluation 371 

The ECOSSE model was evaluated by comparing the output from the model to the 372 

measured Rh fluxes from the three sites, which represent the following land uses: 373 

willow, poplar and arable (soya bean–maize rotation). The modelled Rh was strongly 374 

and significantly correlated with the measured values at all sites, with r values of 0.81 375 

(willow), 0.96 (poplar) and 0.83 (arable) (Table 3). The model evaluation also showed 376 

no significant difference between measured and modelled values (RMSE < RMSE95), 377 

no bias in the total difference (E < E95) and no significant model bias for all three 378 

types of vegetation (Table 3).  379 

The model was able to predict seasonal trends in Rh at all of the sites (Figure 1); 380 

at the poplar and arable sites, it occasionally underestimated the flux values during the 381 

warm weather in spring and summer compared to the measured Rh. At the poplar site, 382 

the modelled Rh was estimated to be 2134 kg C ha-1 from May to October 2012, 383 

against a measured Rh value of 4676 kg C ha-1 for the same period. At the arable site, 384 

the model estimated an Rh of 1336 kg C ha-1 from May to October 2011, whereas the 385 

Rh measured at the same time was 3071 kg C ha-1. The model predicts the Rh that 386 

occurs only from the soil depth at which the soil characteristics have been measured, 387 

which were used as inputs to the model. The soil characteristics used to run the model 388 

for the poplar and arable sites were available at depths of 40 and 60 cm only, 389 

respectively. Therefore, the Rh efflux that the model simulates at the soil surface is 390 

that which comes from these specific depths. On the other hand, the measured Rh 391 
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represents the flux from the whole soil profile; therefore, we expected the modelled 392 

Rh to be underestimated compared to the measured values. For the willow site, 393 

measured values used as inputs to the model were from a depth of 1 m and so the 394 

model values of Rh were underestimated less because they were related to fluxes from 395 

1-m depth (2989 kg C ha-1 modelled Rh against 3858 kg C ha-1 measured Rh from 396 

April to September 2012).  397 

Another possible explanation for the underestimated Rh fluxes is that the soil 398 

might not have been in a steady state at the start of the simulation, which was 399 

assumed. If SOM was being lost from the soil instead of being in a steady state, then 400 

the rate of SOM decomposition would be underestimated, which means that the 401 

simulations would also underestimate Rh. Unfortunately, we do not have historical 402 

data to reject or accept this hypothesis. However, because there was no significant 403 

error between the simulated and measured values of Rh and no model bias, it is 404 

unlikely that underestimation of the flux is due to missing processes in the model. If a 405 

model is evaluated against independent data, the evaluation could show an error, 406 

exposing the effect of the missing process. It is important to note the large variability 407 

in the measured values, which led to large RMSE95 and E95 values at the poplar and 408 

arable sites (Table 3), resulted in the calculated RMSE and E values not being 409 

statistically significant. To reduce uncertainties in the evaluation of the model, it is 410 

advisable that Rh is measured on more field plots than we used (i.e. n > 3). A larger 411 

number of field plots will lead to a greater accuracy in the measured Rh, less variation 412 

in the measured values and consequently a more accurate representation of the values 413 

against with the model will be evaluated. 414 

The evaluation of a process-based model, such as ECOSSE, depends strictly on the 415 

quality, type and frequency of the measured values used to test the model. Therefore, 416 
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it is a procedure that is in constant development. The first evaluation studies on the 417 

ability of ECOSSE to simulate Rh were done with Rh data from two different 418 

sampling methods, EC (Abdalla et al., 2014; Dondini et al., 2016b) and chamber 419 

methods (Dondini et al., (2016b). Dondini et al. (2016b) evaluated the suitability of 420 

the ECOSSE model to estimate soil GHG fluxes from short rotation coppice willow, 421 

short rotation forestry (Pinus sylvestris L.) and Miscanthus after land-use change from 422 

conventional systems (grassland and arable). The Rh was simulated at four paired sites 423 

in the UK and compared to estimates of Rh derived from the ecosystem respiration 424 

estimated from EC and Rh determined from monthly chamber (IRGA) measurements. 425 

The correlations between modelled and measured Rh were weak when model values 426 

were compared with the values from the chambers (Dondini et al., 2016b). The 427 

discrepancy between modelled- and chamber-derived Rh appeared to be due to the 428 

nature of the chamber-derived Rh, which was not related to the soil processes 429 

described in the model. The chamber-derived Rh was estimated from direct 430 

measurements of total soil respiration, therefore the degree of correlation between 431 

measured and modelled Rh was also related to the Rh:Rs ratio adopted. In addition to 432 

this, the chamber-derived Rh was estimated from a single data point which was taken 433 

to represent monthly total soil respiration. Dondini et al. (2016b) suggested that direct 434 

and continuous measurements of Rh would be needed to test these hypotheses and to 435 

evaluate the ECOSSE model further. The results from the current study for the willow 436 

site can be compared directly to the aforementioned study by Dondini et al. (2016b). 437 

At the willow site the correlations between EC-derived Rh and chamber-derived Rh 438 

were 0.77 and 0.75, respectively, whereas the correlation coefficient from the present 439 

study at this site was stronger (r = 0.81) with direct and continuous measurements of 440 
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Rh. The present study, therefore, reinforces former findings and improves on previous 441 

evaluations of the ECOSSE model. 442 

 443 

Use of direct measurements as a tool to test model simulation 444 

In the present study, the trenching method was applied to measure Rh at three 445 

experimental sites, and subsequently to compare its value to the ECOSSE output. This 446 

technique to separate soil CO2 flows has been used successfully before to measure Rh 447 

under different vegetation types and climatic conditions (Saiz et al., 2006; Ventura et 448 

al., 2015). Kuzyakov (2006) reviewed the existing approaches to estimate the 449 

contribution of individual sources to total soil CO2 efflux, but he found no single 450 

satisfactory partitioning method. The study reported that the most reliable methods for 451 

the separation of root-derived from SOM-derived CO2 are based on isotopes. 452 

However, in situations where high costs or the lack of appropriate expertise or both 453 

might limit the use of isotope approaches, future investigators might consider the root 454 

exclusion techniques. In a comparative study of root exclusion and isotopic 455 

approaches, Rochette et al. (1999) found that 13C isotopic labelling and root exclusion 456 

methods produced similar values for root respiration, and concluded that both 457 

approaches were useful to partition total soil respiration. The main concern with the 458 

trenching technique is that it results in a considerable increase in dead root biomass in 459 

the treated plots, which can lead to an increase in the measured Rh (Subke et al., 460 

2006). This issue is generally acknowledged by authors and the root decay in trenched 461 

plots is often measured, estimated or derived from other published studies to correct 462 

the measured Rh. In a review of partitioning methods, Subke et al. (2006) reported 463 

that, if the additional root decay in trenched plots is taken into account, the Rh 464 

contribution to Rs would be reduced by, on average, 12%. The considerable range of 465 
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decay constants observed by Subke et al. (2006) indicates that root decay depends 466 

strongly on C lost as CO2, which suggests that these variables depend on local 467 

conditions (e.g. soil type, climate or litter quality). The authors therefore 468 

recommended that the fine and coarse root biomass should be measured for each area 469 

at the beginning and at the end of any root exclusion experiment, and that root decay 470 

should be measured independently. Because of cost limitations in the present study, it 471 

was not possible to measure the rate of root decay. Nevertheless, we can exclude any 472 

possible effect of roots within the root exclusion plots at the arable site because the 473 

trenched plots were set up before sowing. At the willow and poplar sites the root 474 

exclusion plots were placed between tree rows, therefore root respiration should be 475 

minimal. Despite this aspect, the model was able to simulate soil Rh with a good 476 

degree of accuracy at all three sites. 477 

 478 

Conclusions 479 

We used a limited set of input data to simulate Rh at three sites in Europe with the 480 

ECOSSE model, and the output predicted seasonal trends in Rh at all of the sites. The 481 

correlation between measured and modelled values was strong (r ranged from 0.81 to 482 

0.93) and statistically significant. The total difference between the simulated and 483 

measured values and the ‘lack-of fit’ statistical analyses showed no significant 484 

differences between modelled and measured Rh, suggesting that the ECOSSE model 485 

can simulate soil Rh adequately under all land uses tested (willow, poplar and arable). 486 

The overall results of the present study also emphasized that continuous and 487 

direct measurements (such as automatic chambers installed on root-exclusion plots) 488 

are a useful tool to test the model’s simulation of Rh at the site level. Furthermore, 489 
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more chambers and experimental plots should be used to monitor Rh where soil 490 

conditions are very variable. 491 
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FIGURE CAPTIONS 626 

Figure 1 Histograms of (a) Rh data and (b) Rh residuals from for the three 627 

experimental sites, and distribution of (c) the Box–Cox transformed Rh data and (d) 628 

Rh residuals after Box–Cox transformation for the arable and poplar sites. Line 629 

represents a normal distribution. 630 

 631 

Figure 2 Measured (filled triangle) and modelled (solid line with circle markers) 632 

monthly heterotrophic respiration (Rh) under (a) willow, (b) poplar and (c) arable 633 

during the measurement periods. Vertical bars are 95% confidence interval of the 634 

measured values. The Rh data were not measured in October 2012–February 2013 and 635 

in July 2013 at the willow site, in June–July 2013 at the poplar site and in March–636 

April 2011 at the arable site. 637 
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TABLES 638 

Table 1 Land-use type, coordinates and soil characteristics of the study sites. 639 

Land-use, location Latitude,  

longitude 
Soil depth 

Soil bulk 

density 
pH Clay Silt Sand Soil carbon 

  /cm /g cm-3  /%   /t C  ha-1 

Willow, West Sussex UK 50.9 N, 0.4 E 100 1.2 6.0 10 60 30 292 

Poplar, Prato Stesia IT 45.6 N, 8.4 E   40 1.4 5.4 12 34 54   88 

Arable, Beano IT 46.0 N, 13.0 E   60 1.1 7.1 15 58 27   72 

640 
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Table 2 Long-term (30 years) average precipitation, potential evapotranspiration (PET) and temperature at the study sites. 641 

    Arable     Poplar     Willow   
 Precipitation PET Temperature Precipitation PET Temperature Precipitation PET Temperature 
  /mm /mm ᵒC /mm /mm /ᵒC /mm /mm /ᵒC 
January 46 6 4 45 4 2 80 16 16 
February 42 10 5 37 10 4 54 18 18 
March 64 27 9 64 30 8 55 30 30 
April 87 55 13 102 53 12 46 48 48 
May 89 96 18 125 89 16 47 73 73 
June 91 127 21 98 121 20 48 95 95 
July 73 146 24 74 140 23 49 110 110 
August 78 135 23 83 128 22 52 103 103 
September            100 92 19 97 88 18 60 79 79 
October 98 52 14 93 49 13 99 51 51 
November 93 22 9 95 19 7 88 29 29 
December 83 8 5 48 6 3 86 18 18 
 642 
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Table 3 Evaluation of the ECOSSE model to simulate heterotrophic respiration (Rh) 643 

at the study sites. Association is significant if F-value > F-value at (P = 0.05). Error 644 

between measured and modelled values is not significant for RMSE < RMSE95. 645 

Relative error is not significant for E < E95. Lack of fit is significant if F-value > F-646 

value at (P = 0.05). 647 

Statistic Willow Poplar* Arable* 

r (Correlation Coefficient)   0.8     0.96     0.8 
F-value   4.2 175.2   43.4 
F-value at (P = 0.05)   2.3     4.5     4.4 

RMSE (Root mean square error of model)/% 26   62   59 

RMSE95 (95% Confidence Limit)/% 54 104 217 

E (Relative Error) 18   56   48 

E95 (95% Confidence Limit).  50   88 196 

LOFIT (Lack-of-fit)       
F-value    0.03     0.6     0.4  
F-value at (P = 0.05)    2     1.7     1.7 

Number of values (months)  11   18   22 

*Statistical analysis of poplar and arable sites was done on transformed data 648 


