2,706 research outputs found

    Fuzzy shape Classification exploiting Geometrical and Moments Descriptors

    Get PDF
    In the era of data intensive management and discovery, the volume of images repositories requires effective means for mining and classifying digital image collections. Recent studies have evidenced great interest in image processing by "mining" visual information for objects recognition and retrieval. Particularly, image disambiguation based on the shape produces better results than traditional features such as color or texture. On the other hand, the classification of objects extracted from images appears more intuitively formulated as a shape classification task. This work introduces an approach for 2D shapes classification, based on the combined use of geometrical and moments features extracted by a given collection of images. It achieves a shape based classification exploiting fuzzy clustering techniques, which enable also a query-by-image

    Hand-draw sketching for image retrieval through fuzzy clustering techniques

    Get PDF
    Nowadays, the growing of digital media such as images represents an important issue for niultimedia mining applications. Since the traditional information retrieval techniques developed for textual documents do not support adequately these media, new approaches for indexing and retrieval of images are needed. In this paper, we propose an approach for retrieving image by hand-drawn object sketch. For this purpose. we address the classification of images based on shape recognition. The classification is based on the combined use of geometrical and moments features extracted by a given collection of images and achieves shape-based classification through fuzzy clustering techniques. Then, the retrieval is obtained using a hand-draw shape that becomes a query to submit to the system and get ranked similar images

    Deformable Prototypes for Encoding Shape Categories in Image Databases

    Full text link
    We describe a method for shape-based image database search that uses deformable prototypes to represent categories. Rather than directly comparing a candidate shape with all shape entries in the database, shapes are compared in terms of the types of nonrigid deformations (differences) that relate them to a small subset of representative prototypes. To solve the shape correspondence and alignment problem, we employ the technique of modal matching, an information-preserving shape decomposition for matching, describing, and comparing shapes despite sensor variations and nonrigid deformations. In modal matching, shape is decomposed into an ordered basis of orthogonal principal components. We demonstrate the utility of this approach for shape comparison in 2-D image databases.Office of Naval Research (Young Investigator Award N00014-06-1-0661

    Next Generation of Product Search and Discovery

    Get PDF
    Online shopping has become an important part of people’s daily life with the rapid development of e-commerce. In some domains such as books, electronics, and CD/DVDs, online shopping has surpassed or even replaced the traditional shopping method. Compared with traditional retailing, e-commerce is information intensive. One of the key factors to succeed in e-business is how to facilitate the consumers’ approaches to discover a product. Conventionally a product search engine based on a keyword search or category browser is provided to help users find the product information they need. The general goal of a product search system is to enable users to quickly locate information of interest and to minimize users’ efforts in search and navigation. In this process human factors play a significant role. Finding product information could be a tricky task and may require an intelligent use of search engines, and a non-trivial navigation of multilayer categories. Searching for useful product information can be frustrating for many users, especially those inexperienced users. This dissertation focuses on developing a new visual product search system that effectively extracts the properties of unstructured products, and presents the possible items of attraction to users so that the users can quickly locate the ones they would be most likely interested in. We designed and developed a feature extraction algorithm that retains product color and local pattern features, and the experimental evaluation on the benchmark dataset demonstrated that it is robust against common geometric and photometric visual distortions. Besides, instead of ignoring product text information, we investigated and developed a ranking model learned via a unified probabilistic hypergraph that is capable of capturing correlations among product visual content and textual content. Moreover, we proposed and designed a fuzzy hierarchical co-clustering algorithm for the collaborative filtering product recommendation. Via this method, users can be automatically grouped into different interest communities based on their behaviors. Then, a customized recommendation can be performed according to these implicitly detected relations. In summary, the developed search system performs much better in a visual unstructured product search when compared with state-of-art approaches. With the comprehensive ranking scheme and the collaborative filtering recommendation module, the user’s overhead in locating the information of value is reduced, and the user’s experience of seeking for useful product information is optimized

    The Optimisation of Elementary and Integrative Content-Based Image Retrieval Techniques

    Get PDF
    Image retrieval plays a major role in many image processing applications. However, a number of factors (e.g. rotation, non-uniform illumination, noise and lack of spatial information) can disrupt the outputs of image retrieval systems such that they cannot produce the desired results. In recent years, many researchers have introduced different approaches to overcome this problem. Colour-based CBIR (content-based image retrieval) and shape-based CBIR were the most commonly used techniques for obtaining image signatures. Although the colour histogram and shape descriptor have produced satisfactory results for certain applications, they still suffer many theoretical and practical problems. A prominent one among them is the well-known “curse of dimensionality “. In this research, a new Fuzzy Fusion-based Colour and Shape Signature (FFCSS) approach for integrating colour-only and shape-only features has been investigated to produce an effective image feature vector for database retrieval. The proposed technique is based on an optimised fuzzy colour scheme and robust shape descriptors. Experimental tests were carried out to check the behaviour of the FFCSS-based system, including sensitivity and robustness of the proposed signature of the sampled images, especially under varied conditions of, rotation, scaling, noise and light intensity. To further improve retrieval efficiency of the devised signature model, the target image repositories were clustered into several groups using the k-means clustering algorithm at system runtime, where the search begins at the centres of each cluster. The FFCSS-based approach has proven superior to other benchmarked classic CBIR methods, hence this research makes a substantial contribution towards corresponding theoretical and practical fronts

    Medical Image Modality Classification using Feature Weighted Clustering Approach.

    Get PDF
    Sistem Dapat Semula Imej Perubatan merupakan satu bidang yang amat penting bagi pembekal penjagaan kesihatan. Medical Image Retrieval System is an area of great importance to the healthcare providers

    Review of Person Re-identification Techniques

    Full text link
    Person re-identification across different surveillance cameras with disjoint fields of view has become one of the most interesting and challenging subjects in the area of intelligent video surveillance. Although several methods have been developed and proposed, certain limitations and unresolved issues remain. In all of the existing re-identification approaches, feature vectors are extracted from segmented still images or video frames. Different similarity or dissimilarity measures have been applied to these vectors. Some methods have used simple constant metrics, whereas others have utilised models to obtain optimised metrics. Some have created models based on local colour or texture information, and others have built models based on the gait of people. In general, the main objective of all these approaches is to achieve a higher-accuracy rate and lowercomputational costs. This study summarises several developments in recent literature and discusses the various available methods used in person re-identification. Specifically, their advantages and disadvantages are mentioned and compared.Comment: Published 201
    corecore