5 research outputs found

    A generic self-supervised learning (SSL) framework for representation learning from spectra-spatial feature of unlabeled remote sensing imagery

    Get PDF
    Remote sensing data has been widely used for various Earth Observation (EO) missions such as land use and cover classification, weather forecasting, agricultural management, and environmental monitoring. Most existing remote sensing data-based models are based on supervised learning that requires large and representative human-labelled data for model training, which is costly and time-consuming. Recently, self-supervised learning (SSL) enables the models to learn a representation from orders of magnitude more unlabelled data. This representation has been proven to boost the performance of downstream tasks and has potential for remote sensing applications. The success of SSL is heavily dependent on a pre-designed pretext task, which introduces an inductive bias into the model from a large amount of unlabelled data. Since remote sensing imagery has rich spectral information beyond the standard RGB colour space, the pretext tasks established in computer vision based on RGB images may not be straightforward to be extended to the multi/hyperspectral domain. To address this challenge, this work has designed a novel SSL framework that is capable of learning representation from both spectra-spatial information of unlabelled data. The framework contains two novel pretext tasks for object-based and pixel-based remote sensing data analysis methods, respectively. Through two typical downstream tasks evaluation (a multi-label land cover classification task on Sentienl-2 multispectral datasets and a ground soil parameter retrieval task on hyperspectral datasets), the results demonstrate that the representation obtained through the proposed SSL achieved a significant improvement in model performance

    A generic Self-Supervised Learning (SSL) framework for representation learning from spectral–spatial features of unlabeled remote sensing imagery

    Get PDF
    Remote sensing data has been widely used for various Earth Observation (EO) missions such as land use and cover classification, weather forecasting, agricultural management, and environmental monitoring. Most existing remote-sensing-data-based models are based on supervised learning that requires large and representative human-labeled data for model training, which is costly and time-consuming. The recent introduction of self-supervised learning (SSL) enables models to learn a representation from orders of magnitude more unlabeled data. The success of SSL is heavily dependent on a pre-designed pretext task, which introduces an inductive bias into the model from a large amount of unlabeled data. Since remote sensing imagery has rich spectral information beyond the standard RGB color space, it may not be straightforward to extend to the multi/hyperspectral domain the pretext tasks established in computer vision based on RGB images. To address this challenge, this work proposed a generic self-supervised learning framework based on remote sensing data at both the object and pixel levels. The method contains two novel pretext tasks, one for object-based and one for pixel-based remote sensing data analysis methods. One pretext task is used to reconstruct the spectral profile from the masked data, which can be used to extract a representation of pixel information and improve the performance of downstream tasks associated with pixel-based analysis. The second pretext task is used to identify objects from multiple views of the same object in multispectral data, which can be used to extract a representation and improve the performance of downstream tasks associated with object-based analysis. The results of two typical downstream task evaluation exercises (a multilabel land cover classification task on Sentinel-2 multispectral datasets and a ground soil parameter retrieval task on hyperspectral datasets) demonstrate that the proposed SSL method learns a target representation that covers both spatial and spectral information from massive unlabeled data. A comparison with currently available SSL methods shows that the proposed method, which emphasizes both spectral and spatial features, outperforms existing SSL methods on multi- and hyperspectral remote sensing datasets. We believe that this approach has the potential to be effective in a wider range of remote sensing applications and we will explore its utility in more remote sensing applications in the future

    Self-supervised remote sensing feature learning: Learning Paradigms, Challenges, and Future Works

    Full text link
    Deep learning has achieved great success in learning features from massive remote sensing images (RSIs). To better understand the connection between feature learning paradigms (e.g., unsupervised feature learning (USFL), supervised feature learning (SFL), and self-supervised feature learning (SSFL)), this paper analyzes and compares them from the perspective of feature learning signals, and gives a unified feature learning framework. Under this unified framework, we analyze the advantages of SSFL over the other two learning paradigms in RSIs understanding tasks and give a comprehensive review of the existing SSFL work in RS, including the pre-training dataset, self-supervised feature learning signals, and the evaluation methods. We further analyze the effect of SSFL signals and pre-training data on the learned features to provide insights for improving the RSI feature learning. Finally, we briefly discuss some open problems and possible research directions.Comment: 24 pages, 11 figures, 3 table

    Self-supervised Learning in Remote Sensing: A Review

    Get PDF
    In deep learning research, self-supervised learning (SSL) has received great attention triggering interest within both the computer vision and remote sensing communities. While there has been a big success in computer vision, most of the potential of SSL in the domain of earth observation remains locked. In this paper, we provide an introduction to, and a review of the concepts and latest developments in SSL for computer vision in the context of remote sensing. Further, we provide a preliminary benchmark of modern SSL algorithms on popular remote sensing datasets, verifying the potential of SSL in remote sensing and providing an extended study on data augmentations. Finally, we identify a list of promising directions of future research in SSL for earth observation (SSL4EO) to pave the way for fruitful interaction of both domains.Comment: Accepted by IEEE Geoscience and Remote Sensing Magazine. 32 pages, 22 content page
    corecore