3 research outputs found

    Reduction of Coil-Crack Angle Sensitivity Effect Using a Novel Flux Feature of ACFM Technique

    Get PDF
    Alternating current field measurement (ACFM) testing is one of the promising techniques in the field of non-destructive testing with advantages of the non-contact capability and the reduction of lift-off effects. In this paper, a novel crack detection approach was proposed to reduce the effect of the angled crack (cack orientation) by using rotated ACFM techniques. The sensor probe is composed of an excitation coil and two receiving coils. Two receiving coils are orthogonally placed in the center of the excitation coil where the magnetic field is measured. It was found that the change of the x component and the peak value of the z component of the magnetic field when the sensor probe rotates around a crack followed a sine wave shape. A customized accelerated finite element method solver programmed in MATLAB was adopted to simulate the performance of the designed sensor probe which could significantly improve the computation efficiency due to the small crack perturbation. The experiments were also carried out to validate the simulations. It was found that the ratio between the z and x components of the magnetic field remained stable under various rotation angles. It showed the potential to estimate the depth of the crack from the ratio detected by combining the magnetic fields from both receiving coils (i.e., the x and z components of the magnetic field) using the rotated ACFM technique

    Rotating Focused Field Eddy-Current Sensing for Arbitrary Orientation Defects Detection in Carbon Steel

    No full text
    This paper presents a rotating focused field eddy-current (EC) sensing technique, which leverages the advantages of magnetic field focusing and rotating magnetic field, for arbitrary orientation defects detection. The sensor consists of four identical excitation coils orthogonally arranged in an upside-down pyramid configuration and a giant magneto-resistive (GMR) detection element. The four coils are connected to form two figure-8-shaped focusing sub-probes, which are fed by two identical harmonic currents with 90 degrees phase difference. A finite element model-based study of arbitrary orientation defects detection was performed to understand the probe operational characteristics and optimize its design parameters. Probe prototyping and experimental validation were also carried out on a carbon steel plate specimen with four prefabricated surface-breaking defects. In-situ spot inspection with the probe rotating above the defect and a manual line-scan inspection were both conducted. Results showed that the probe has the capability of detecting defects with any orientations while maintaining the same sensitivity and the defect depth can be quantitatively evaluated by using the signal amplitude. Compared with the existing rotating field probes, the presented probe does not require additional excitation adjustment or data fusion. Meanwhile, due to its focusing effect, it can generate a strong rotating magnetic field at the defect location with a weak background noise, thus yielding superior signal-to-noise ratio
    corecore