1,035 research outputs found

    Towards Multi-class Object Detection in Unconstrained Remote Sensing Imagery

    Get PDF
    Automatic multi-class object detection in remote sensing images in unconstrained scenarios is of high interest for several applications including traffic monitoring and disaster management. The huge variation in object scale, orientation, category, and complex backgrounds, as well as the different camera sensors pose great challenges for current algorithms. In this work, we propose a new method consisting of a novel joint image cascade and feature pyramid network with multi-size convolution kernels to extract multi-scale strong and weak semantic features. These features are fed into rotation-based region proposal and region of interest networks to produce object detections. Finally, rotational non-maximum suppression is applied to remove redundant detections. During training, we minimize joint horizontal and oriented bounding box loss functions, as well as a novel loss that enforces oriented boxes to be rectangular. Our method achieves 68.16% mAP on horizontal and 72.45% mAP on oriented bounding box detection tasks on the challenging DOTA dataset, outperforming all published methods by a large margin (+6% and +12% absolute improvement, respectively). Furthermore, it generalizes to two other datasets, NWPU VHR-10 and UCAS-AOD, and achieves competitive results with the baselines even when trained on DOTA. Our method can be deployed in multi-class object detection applications, regardless of the image and object scales and orientations, making it a great choice for unconstrained aerial and satellite imagery.Comment: ACCV 201

    Object Detection in 20 Years: A Survey

    Full text link
    Object detection, as of one the most fundamental and challenging problems in computer vision, has received great attention in recent years. Its development in the past two decades can be regarded as an epitome of computer vision history. If we think of today's object detection as a technical aesthetics under the power of deep learning, then turning back the clock 20 years we would witness the wisdom of cold weapon era. This paper extensively reviews 400+ papers of object detection in the light of its technical evolution, spanning over a quarter-century's time (from the 1990s to 2019). A number of topics have been covered in this paper, including the milestone detectors in history, detection datasets, metrics, fundamental building blocks of the detection system, speed up techniques, and the recent state of the art detection methods. This paper also reviews some important detection applications, such as pedestrian detection, face detection, text detection, etc, and makes an in-deep analysis of their challenges as well as technical improvements in recent years.Comment: This work has been submitted to the IEEE TPAMI for possible publicatio

    FAST ROTATED BOUNDING BOX ANNOTATIONS FOR OBJECT DETECTION

    Get PDF
    Traditionally, object detection models use a large amount of annotated data and axis-aligned bounding boxes (AABBs) are often chosen as the image annotation technique for both training and predictions. The purpose of annotating the objects in the images is to indicate the regions of interest with the corresponding labels. Accurate object annotations help the computer vision models to understand the distinct patterns of the image features to recognize and localize different classes of objects. However, AABBs are often a poor fit for elongated object instances. It’s also challenging to localize objects with AABBs in densely packed aerial images because of overlapping adjacent bounding boxes. Alternatively, using rectangular annotations that can be oriented diagonally, also known as rotated bounding boxes (RBB), can provide a much tighter fit for elongated objects and reduce the potential bounding box overlap between adjacent objects. However, RBBs are much more time-consuming and tedious to annotate than AABBs for large datasets. In this work, we propose a novel annotation tool named as FastRoLabelImg (Fast Rotated LabelImg) for producing high-quality RBB annotations with low time and effort. The tool generates accurate RBB proposals for objects of interest as the annotator makes progress through the dataset. It can also adapt available AABBs to generate RBB proposals. Furthermore, a multipoint box drawing system is provided to reduce manual RBB annotation time compared to the existing methods. Across three diverse datasets, we show that the proposal generation methods can achieve a maximum of 88.9% manual workload reduction. We also show that our proposed manual annotation method is twice as fast as the existing system with the same accuracy by conducting a participant study. Lastly, we publish the RBB annotations for two public datasets in order to motivate future research that will contribute in developing more competent object detection algorithms capable of RBB predictions
    • …
    corecore