75,727 research outputs found
Effect of time lapse on the diagnostic accuracy of cone beam computed tomography for detection of vertical root fractures
Accurate and early diagnosis of vertical root fractures (VRFs) is imperative to prevent extensive bone loss and unnecessary endodontic and prosthodontic treatments. The aim of this study was to assess the effect of time lapse on the diagnostic accuracy of cone beam computed tomography (CBCT) for VRFs in endodontically treated dog’s teeth. Forty-eight incisors and premolars of three adult male dogs underwent root canal therapy. The teeth were assigned to two groups: VRFs were artificially induced in the first group (n=24) while the teeth in the second group remained intact (n=24). The CBCT scans were obtained by NewTom 3G unit immediately after inducing VRFs and after one, two, three, four, eight, 12 and 16 weeks. Three oral and maxillofacial radiologists blinded to the date of radiographs assessed the presence/absence of VRFs on CBCT scans. The sensitivity, specificity and accuracy values were calculated and data were analyzed using SPSS v.16 software and ANOVA. The total accuracy of detection of VRFs immediately after surgery, one, two, three, four, eight, 12 and 16 weeks was 67.3%, 68.7%, 66.6%, 64.6%, 64.5%, 69.4%, 68.7%, 68% respectively. The effect of time lapse on detection of VRFs was not significant (p>0.05). Overall sensitivity, specificity and accuracy of CBCT for detection of VRFs were 74.3%, 62.2%, 67.2% respectively. Cone beam computed tomography is a valuable tool for detection of VRFs. Time lapse (four months) had no effect on detection of VRFs on CBCT scans. © 2016, Associacao Brasileira de Divulgacao Cientifica. All rights reserved
Sacral Fractures and Associated Injuries.
STUDY DESIGN: Literature review.
OBJECTIVE: The aim of this review is to describe the injuries associated with sacral fractures and to analyze their impact on patient outcome.
METHODS: A comprehensive narrative review of the literature was performed to identify the injuries associated with sacral fractures.
RESULTS: Sacral fractures are uncommon injuries that result from high-energy trauma, and that, due to their rarity, are frequently underdiagnosed and mistreated. Only 5% of sacral fractures occur in isolation. Injuries most often associated with sacral fractures include neurologic injuries (present in up to 50% of sacral fractures), pelvic ring disruptions, hip and lumbar spine fractures, active pelvic/ abdominal bleeding and the presence of an open fracture or significant soft tissue injury. Diagnosis of pelvic ring fractures and fractures extending to the lumbar spine are key factors for the appropriate management of sacral fractures. Importantly, associated systemic (cranial, thoracic, and abdominopelvic) or musculoskeletal injuries should be promptly assessed and addressed. These associated injuries often dictate the management and eventual outcome of sacral fractures and, therefore, any treatment algorithm should take them into consideration.
CONCLUSIONS: Sacral fractures are complex in nature and often associated with other often-missed injuries. This review summarizes the most relevant associated injuries in sacral fractures and discusses on their appropriate management
Sensitivity of Fractured Reservoir Performance to Static and Dynamic Properties, and History Matching
Imperial Users onl
System for detecting substructure microfractures and method therefore
Bursts of signals at different frequencies are induced into substructure, adjacent to a borehole. The return signals from each burst of signals are normalized to compensate for the attenuation, experienced by more distant return signals. The peak amplitudes of return signals, above a selected level, are cut off, and an average signal is produced from the normalized amplitude-limited return signals of each burst. The averaged signals of the return signals of all the signal bursts at the different frequencies are processed to provide a combined signal, whose amplitude is related to the microfracture density of the substructure adjacent to the borehole
PyFrac: A planar 3D hydraulic fracture simulator
Fluid driven fractures propagate in the upper earth crust either naturally or
in response to engineered fluid injections. The quantitative prediction of
their evolution is critical in order to better understand their dynamics as
well as to optimize their creation. We present a Python implementation of an
open-source hydraulic fracture propagation simulator based on the implicit
level set algorithm originally developed by Peirce & Detournay (2008) -- "An
implicit level set method for modeling hydraulically driven fractures". Comp.
Meth. Appl. Mech. Engng, (33-40):2858--2885. This algorithm couples a finite
discretization of the fracture with the use of the near tip asymptotic
solutions of a steadily propagating semi-infinite hydraulic fracture. This
allows to resolve the multi-scale processes governing hydraulic fracture growth
accurately, even with relatively coarse meshes. We present an overview of the
mathematical formulation, the numerical scheme and the details of our
implementation. A series of problems including a radial hydraulic fracture
verification benchmark, the propagation of a height contained hydraulic
fracture, the lateral spreading of a magmatic dyke and the handling of fracture
closure are presented to demonstrate the capabilities, accuracy and robustness
of the implemented algorithm
Anisotropy in Fracking: A Percolation Model for Observed Microseismicity
Hydraulic fracturing (fracking) using high pressures and a low viscosity
fluid allow the extraction of large quantiles of oil and gas from very low
permeability shale formations. The initial production of oil and gas at depth
leads to high pressures and an extensive distribution of natural fractures
which reduce the pressures. With time these fractures heal, sealing the
remaining oil and gas in place. High volume fracking opens the healed fractures
allowing the oil and gas to flow the horizontal productions wells. We model the
injection process using invasion percolation. We utilize a 2D square lattice of
bonds to model the sealed natural fractures. The bonds are assigned random
strengths and the fluid, injected at a point, opens the weakest bond adjacent
to the growing cluster of opened bonds. Our model exhibits burst dynamics in
which the clusters extends rapidly into regions with weak bonds. We associate
these bursts with the microseismic activity generated by fracking injections. A
principal object of this paper is to study the role of anisotropic stress
distributions. Bonds in the -direction are assigned higher random strengths
than bonds in the -direction. We illustrate the spatial distribution of
clusters and the spatial distribution of bursts (small earthquakes) for several
degrees of anisotropy. The results are compared with observed distributions of
microseismicity in a fracking injection. Both our bursts and the observed
microseismicity satisfy Gutenberg-Richter frequency-size statistics.Comment: 14 pages, 10 figure
Transport and reduction of nitrate in clayey till underneath forest and arable land.
Transport and reduction of nitrate in a typically macroporous clayey till were examined at variable flow rate and nitrate flux. The experiments were carried out using saturated, large diameter (0.5 m), undisturbed soil columns (LUC), from a forest and nearby agricultural sites. Transport of nitrate was controlled by flow along the macropores (fractures and biopores) in the columns. Nitrate reduction (denitrification) determined under active flow mainly followed first order reactions with half-lives (t1/2) increasing with depth (1.5–3.5 m) from 7 to 35 days at the forest site and 1–7 h at the agricultural site. Nitrate reduction was likely due to microbial degradation of accumulated organic matter coupled with successive consumption of O2 and NO3− in the macropore water followed by reductive dissolution of Fe and Mn from minerals along the macropores. Concentrations of total organic carbon measured in soil samples were near identical at the two study sites and consequently not useful as indicator for the observed differences in nitrate reduction. Instead the high reduction rates at the agricultural site were positively correlated with elevated concentration of water-soluble organic carbon and nitrate-removing bacteria relative to the forest site. After high concentrations of water-soluble organic carbon in the columns from the agricultural site were leached they lost their elevated reduction rates, which, however, was successfully re-established by infiltration of new reactive organics represented by pesticides. Simulations using a calibrated discrete fracture matrix diffusion (DFMD) model could reasonably reproduce the denitrification and resulting flux of nitrate observed during variable flow rate from the columns
- …
