24,033 research outputs found

    Universally Optimal Noisy Quantum Walks on Complex Networks

    Get PDF
    Transport properties play a crucial role in several fields of science, as biology, chemistry, sociology, information science, and physics. The behavior of many dynamical processes running over complex networks is known to be closely related to the geometry of the underlying topology, but this connection becomes even harder to understand when quantum effects come into play. Here, we exploit the Kossakoski-Lindblad formalism of quantum stochastic walks to investigate the capability to quickly and robustly transmit energy (or information) between two distant points in very large complex structures, remarkably assisted by external noise and quantum features as coherence. An optimal mixing of classical and quantum transport is, very surprisingly, quite universal for a large class of complex networks. This widespread behaviour turns out to be also extremely robust with respect to geometry changes. These results might pave the way for designing optimal bio-inspired geometries of efficient transport nanostructures that can be used for solar energy and also quantum information and communication technologies.Comment: 17 pages, 12 figure

    Failure Localization in Power Systems via Tree Partitions

    Get PDF
    Cascading failures in power systems propagate non-locally, making the control and mitigation of outages extremely hard. In this work, we use the emerging concept of the tree partition of transmission networks to provide an analytical characterization of line failure localizability in transmission systems. Our results rigorously establish the well perceived intuition in power community that failures cannot cross bridges, and reveal a finer-grained concept that encodes more precise information on failure propagations within tree-partition regions. Specifically, when a non-bridge line is tripped, the impact of this failure only propagates within well-defined components, which we refer to as cells, of the tree partition defined by the bridges. In contrast, when a bridge line is tripped, the impact of this failure propagates globally across the network, affecting the power flow on all remaining transmission lines. This characterization suggests that it is possible to improve the system robustness by temporarily switching off certain transmission lines, so as to create more, smaller components in the tree partition; thus spatially localizing line failures and making the grid less vulnerable to large-scale outages. We illustrate this approach using the IEEE 118-bus test system and demonstrate that switching off a negligible portion of transmission lines allows the impact of line failures to be significantly more localized without substantial changes in line congestion

    The stability of a graph partition: A dynamics-based framework for community detection

    Full text link
    Recent years have seen a surge of interest in the analysis of complex networks, facilitated by the availability of relational data and the increasingly powerful computational resources that can be employed for their analysis. Naturally, the study of real-world systems leads to highly complex networks and a current challenge is to extract intelligible, simplified descriptions from the network in terms of relevant subgraphs, which can provide insight into the structure and function of the overall system. Sparked by seminal work by Newman and Girvan, an interesting line of research has been devoted to investigating modular community structure in networks, revitalising the classic problem of graph partitioning. However, modular or community structure in networks has notoriously evaded rigorous definition. The most accepted notion of community is perhaps that of a group of elements which exhibit a stronger level of interaction within themselves than with the elements outside the community. This concept has resulted in a plethora of computational methods and heuristics for community detection. Nevertheless a firm theoretical understanding of most of these methods, in terms of how they operate and what they are supposed to detect, is still lacking to date. Here, we will develop a dynamical perspective towards community detection enabling us to define a measure named the stability of a graph partition. It will be shown that a number of previously ad-hoc defined heuristics for community detection can be seen as particular cases of our method providing us with a dynamic reinterpretation of those measures. Our dynamics-based approach thus serves as a unifying framework to gain a deeper understanding of different aspects and problems associated with community detection and allows us to propose new dynamically-inspired criteria for community structure.Comment: 3 figures; published as book chapte

    Network hierarchy evolution and system vulnerability in power grids

    Get PDF
    (c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.The seldom addressed network hierarchy property and its relationship with vulnerability analysis for power transmission grids from a complex-systems point of view are given in this paper. We analyze and compare the evolution of network hierarchy for the dynamic vulnerability evaluation of four different power transmission grids of real cases. Several meaningful results suggest that the vulnerability of power grids can be assessed by means of a network hierarchy evolution analysis. First, the network hierarchy evolution may be used as a novel measurement to quantify the robustness of power grids. Second, an antipyramidal structure appears in the most robust network when quantifying cascading failures by the proposed hierarchy metric. Furthermore, the analysis results are also validated and proved by empirical reliability data. We show that our proposed hierarchy evolution analysis methodology could be used to assess the vulnerability of power grids or even other networks from a complex-systems point of view.Peer ReviewedPostprint (author's final draft

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    Distributed reactive power feedback control for voltage regulation and loss minimization

    Full text link
    We consider the problem of exploiting the microgenerators dispersed in the power distribution network in order to provide distributed reactive power compensation for power losses minimization and voltage regulation. In the proposed strategy, microgenerators are smart agents that can measure their phasorial voltage, share these data with the other agents on a cyber layer, and adjust the amount of reactive power injected into the grid, according to a feedback control law that descends from duality-based methods applied to the optimal reactive power flow problem. Convergence to the configuration of minimum losses and feasible voltages is proved analytically for both a synchronous and an asynchronous version of the algorithm, where agents update their state independently one from the other. Simulations are provided in order to illustrate the performance and the robustness of the algorithm, and the innovative feedback nature of such strategy is discussed
    • …
    corecore