4 research outputs found

    Robustness of interdependent random geometric networks

    Get PDF
    We propose an interdependent random geometric graph (RGG) model for interdependent networks. Based on this model, we study the robustness of two interdependent spatially embedded networks where interdependence exists between geographically nearby nodes in the two networks. We study the emergence of the giant mutual component in two interdependent RGGs as node densities increase, and define the percolation threshold as a pair of node densities above which the mutual giant component first appears. In contrast to the case for a single RGG, where the percolation threshold is a unique scalar for a given connection distance, for two interdependent RGGs, multiple pairs of percolation thresholds may exist, given that a smaller node density in one RGG may increase the minimum node density in the other RGG in order for a giant mutual component to exist. We derive analytical upper bounds on the percolation thresholds of two interdependent RGGs by discretization, and obtain 99% confidence intervals for the percolation thresholds by simulation. Based on these results, we derive conditions for the interdependent RGGs to be robust under random failures and geographical attacks.United States. Defense Threat Reduction Agency (Grant HDTRA1-14-1-0058

    Robustness of Interdependent Random Geometric Networks

    No full text
    We propose an interdependent random ggraph (RGG) model for interdependent networks. Based on this model, we study the robustness of two interdependent spatially embedded networks where interdependence exists between geographically nearby nodes in the two networks. We study the emergence of the giant mutual component in two interdependent RGGs as node densities increase, and define the percolation threshold as a pair of node densities above which the giant mutual component first appears. In contrast to the case for a single RGG, where the percolation threshold is a unique scalar for a given connection distance, for two interdependent RGGs, multiple pairs of percolation thresholds may exist, given that a smaller node density in one RGG may increase the minimum node density in the other RGG in order for a giant mutual component to exist. We derive analytical upper bounds on the percolation thresholds of two interdependent RGGs by discretization, and obtain 99 percent confidence intervals for the percolation thresholds by simulation. Based on these results, we derive conditions for the interdependent RGGs to be robust under random failures and geographical attacks.United States. Defense Threat Reduction Agency (Grant HDTRA1-14-1-0058)United States. Defense Threat Reduction Agency (Grant HDTRA1-13-1-0021)National Science Foundation (U.S.) (Grant CMMI-1638234

    Robustness of Interdependent Random Geometric Networks

    No full text
    corecore