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Abstract—We propose an interdependent random geometric nodes in the first graph. As a result of the cascading faiJures

graph (RGG) model for interdependent networks. Based on tls  removing a small fraction of nodes in the first random graph

model, we study the robustness of two interdependent spatig destroys the giant components of both graphs
embedded networks where interdependence exists between-ge . ;
ographically nearby nodes in the two networks. We study the 10 model spatially embedded networks, an interdependent

emergence of the giant mutual component in two interdepende lattice model was studied inl[3]. Under this model, geograph
RGGs as node densities increase, and define the percolationical attacks may cause significantly more severe cascading
threshold as a pair of node densities above which the mutual@ant  f5ijures than random attacks. Removing nodes in a finitoregi

component first appears. In contrast to the case for a single &G, . . .
where the percolation threshold is a unique scalar for a give (i.e., a zero fraction of nodes) may destroy the infinite clusters

connection distance, for two interdependent RGGs, multipé pairs N both lattices[[4].
of percolation thresholds may exist, given that a smaller nde If every node in one network is interdependent with multiple

density in one RGG may increase the minimum node density nodes in the other network, and a node is content to have at

in the other RGG in order for a giant mutual component to . :
exist. We derive analytical upper bounds on the percolation least one supply node, failures are less likely to casdalle [5

thresholds of two interdependent RGGs by discretization, ad [6]- Although the one-to-multiple interdependence exists
obtain 99% confidence intervals for the percolation thresholds real-world spatially embedded interdependent netwaeks, @

by simulation. Based on these results, we derive conditior®r  control center can be supported by the electric power getbra
the mterdependent RGGs to be robust under random failures by more than one power generator), it has not been previously
and geographical attacks. studied using spatial graph models.

We use a random geometric graph (RGG) to model each of
the two interdependent networks. The two RGGs are allowed
Cyber-physical systems such as smart power grids agfhave different connection distances and densities,wtan
smart transportation networks are being deployed towargipresent two networks that have different average lingtles
the design of smart cities. The integration of communicatigand scales. These differences between the two networks were
networks and physical networks facilitates network operat not captured in the lattice model studied in the previous
and control. In these integrated networks, one networkit#pe |iterature. Moreover, the interdependent RGG model is able
on another for information, power, or other supplies in ordgo capture the one-to-multiple interdependence in spatial
to properly operate, leading to interdependence. For elmpmbedded networks, and provides a more general framework
in smart grids, communication networks rely on the electrgr studying interdependent networks.
power from power grids, and simultaneously control power papysiness is a key design objective for interdependent
generator< [1]. Failures in one network may cascade to @notheqyorks. We study the conditions under which a positive
network, which potentially makes the interdependent net®/0 fraction of nodes are functioning in interdependent RGGs
vulnerable to failures and attacks. as the number of nodes approaches infinity. In this case,
Cascading failures in interdependent networks have b interdependent RGGgercolate Consistent with previous
extensively studied in the statistical physics literassiree the research([2],[[8], 5], the robustness of interdependenGRG
seminal work in [[2], where each of the two interdependegder random failures and geographical attacks is measured
networks is modeled as a random graph. Nodes in the tWg whether percolation exists after the failures and attaG
random graphs are interdependent, and a node is functionjfg best of our knowledge, our paper is the first to study the
if both itself and its interdependent node are in the giagkrcolation of interdependent spatial network modelsgisin
components of the respective random graphs. After initig{athematically rigorous approach.
node failures in the first graph, their interdependent nades The main contributions of this paper are as follows.
the second graph fail. Thus, a connected component in the
second graph may become disconnected, and the failures & We propose an interdependent RGG model for two inter-

the disconnected nodes cascade back to (their interdepgnde  dependent networks, which captures the differences in the
scales of the two networks as well as the one-to-multiple

This work was supported by DTRA grant HDTRA1-14-1-0058. interdependence in spatially embedded networks.
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2) We derive the first analytical upper bounds on the peprobability and below which the probability is zero. It haeh
colation thresholds of the interdependent RGGs, aboskown that a node belongs to the infinite cluster with pasitiv
which a positive fraction of nodes are functioning. probability if and only if an infinite cluster exists, and tu

3) We obtain99% confidence intervals for the percolatiorthe percolation of7(\, d) can be equivalently defined as the
thresholds, by mapping the percolation of interdependesitistence of the infinite clustelr][8]. Moreover, the pertola
RGGs to the percolation of a square lattice where thiereshold ofG(), d) is identical with the percolation threshold
probability that a bond in the lattice is open is evaluateaf G(), d, a?) [7], [O].
by simulation.

4) We characterize sufficient conditions for the interdéa-" Interdependent RGGs
pendent RGGs to percolate under random failures andTwo interdependent networks are modeled by two RGGs
geographical attacks. In particular, if the node densitiési (M1, d1,a?) and Ga(Xz,d2, a*) on thesamea x a square.
are above any upper bound on the percolation threshdidnode in one graph is interdependent with the nodes in
obtained in this paper, the interdependent RGGs remdhe other graph within thénterdependent distancésep See
percolated after a geographical attack. Fig.[d for an illustration. Nodes in one graph atgply nodes

The rest of the paper is organized as follows. We state tf‘% no_des in the other graph W'thm“ep_ The physu:_al |r_1ter-
model and preliminaries in Sectiddl Il. We derive analyticil:eta_‘t'on of supply can be either electric power or infoiinrat
upper bounds on percolation thresholds in Sedfidn 111, amd oat IS essential for proper operation.
tain confidence intervals for percolation thresholds inti®ac
[Vl In Section[M, we study the robustness of interdependent
RGGs under random failures and geographical attacks.ddecti /\’\/
[VTIconcludes the paper. /\

Il. MODEL
Gy

A. Preliminaries on RGG and percolation

An RGG in a two-dimensional square consists of nodes
generated by a Poisson point process and links connectingsig. 1. Two interdependent RGGs with interdependent distalgep
nodes within a given connection distanté [7]. K&\, d, a?)
denote an RGG with node densityand connection distance We define mutual component and giant mutual component
d in an a x a square. The studies on RGG focus on thim interdependent RGGs, in the same way as one defines the
regime where the expected number of nodes \a? is large. connected component and giant component in a single RGG.
We first present. some preliminaries usefgl for deVe|0p|r|9efiniti0n 1. Let V denote nodes in a connected component
our model. Thegiant componenbf an RGG is a connected. G\ d a2 Vl' 19V If h node ini. © VO h
component that contain®(n) nodes. A node belongs to the'" i(Ai,di,a®), Vi € {1,2}. If each node inV; € V2 has

giant component with a positive probabili®9(n)/n if the at Iea;t one supply node if; C V;" within daep, ¥i,j <
. . . . . 1,2},i # 4, then noded/; andV; form amutual component
giant component exists. For a given connection distanee, t

) . . of the interdependent RGGs.
percolation thresholds a node density above which a node If, in addition, V;, contains®(n;) nodes, wheren; — ;a?,

belongs to the giant component with a positive probabiligy,( . .
a giant component exists) and below which the probabilitvyl € {1,2}, then¥; andV; form agiant mutual component
is zero (.e., no giant component exists). By scaling, if the A mutual component can be viewed as an autonomous sys-
percolation threshold i3* under connection distancg then tem in the sense that nodes in a mutual component have supply
the percolation threshold ia*c? under connection distancenodes in the same mutual component, and in each graph, nodes
d/c. Therefore, without loss of generality, in this paper, wehat belong to a mutual component are connected regardiess o
study the percolation thresholds represented by nodet@éEsi the existence of nodes outside the mutual component. Nate th
for given connection distances. a node can receive supply from any of its supply nodes in the
The RGG is closely related to tHeoisson boolean model same mutual component. Nodes in a giant mutual component
[8], where nodes are generated by a Poisson point procassfunctioning since they are connected to a large number
on aninfinite plane Let G(\,d) denote a Poisson booleanof nodes in the network. This definition of functioning is
model with node density\ and connection distancé The consistent with previous research on interdependent mkswvo
difference betwee (\, d) andG(\, d, a?) is that the number based on random graph modéels [2].
of nodes inG(A, d) is infinite while the expected number of For a fixed dgep, if @ giant mutual component exists in
nodes inG(\, d,a?) is large but finite. The Poisson boolearnnterdependent RGGS ()1, d1,a?) andGa ()2, da,a?), then
model can be viewed as a limit of the RGG as the numbar giant mutual component exists in interdependent RGGs
of nodes approaches infinity. The percolation threshold 6f, (\},d1,a?) and Ga()a, da, a?), whereX] > \;. This can
G(\,d) under a givend is defined as the node density abovee explained by coupling’; with G; as follows. By randomly
which a node belongs to thifinite clusterwith positive removing each node i} independently with probability



1 — A1 /A}, the remaining nodes i, has density\;, and not need to have supply nodes was studiedlin [3]. The analysis
a giant mutual component exists in the interdependent RGf&$ies on quantities estimated by simulation and extramoia
that consist of72 and the RGG formed by the remaining nodesuch as the fraction of nodes in the infinite cluster of adatti
in G. Since adding nodes to a graph does not disconnect day any fixed p, which cannot be computed rigorously. In
mutual component, a giant mutual component exists in tkentrast, we study the percolation of the interdependernERG
interdependent RGG&, and G,. By the same analysis, amodel using a mathematically rigorous approach.
giant mutual component also exists in interdependent RGGs
G1(A1,d1,a?) andGh (N, da, a?) for a fixeddgep, if Ay > Ao. [1l. ANALYTICAL UPPER BOUNDS ON PERCOLATION

We define a percolation threshold of two interdependent THRESHOLDS

RGGs as follows. In interdependent RGGs, nodes in the giant mutual com-

Definition 2. A pair of node densitie$\}, \}) is apercola- ponent are viewed as functioning while all the other nodes
tion thresholdof two interdependent RGGs, given connectioare not. Thus, a node is functioning only if it is in the giant
distancesl;, d» and the interdependent distantg,, if a giant component of its own graph, and it depends on at least one
mutual component exists i1 (A1, d1, a?) andG2 ()2, d2,a?)  node in the giant component of the other graph. For any node
for \; > A\f and X2 > )}, and no giant mutual componentb; in G, although the number of nodes @y within distance
exists otherwise. dgep from b; follows a Poisson distribution, the number of
functioning nodes is hard to calculate, since the fractibn o

| t!:or SlxedgliddQ lar:d.?deply tr:re]rel may et;]ust m(;Jlngle P.?.rco'nodes in the giant component 6f, is unknown. Moreover,
ation thresholas. Inturtively, the farger the node densstin - o h5ges in the giant component @% are clustered, and

one graph, the smaller the required node density is in thermli]hus the thinning of the nodes i@ due to a lack of supply

graph in order for the giant mutual component to exist. Thhgodes inG, is difficult to characterize. To overcome these

is in contrast with the situation for a single RGG where ther(ﬁfﬁculties we consider the percolation of two RGGs jojntl

IS a unique percola_tlen threshold fo_r_a f'_Xéd _ instead of studying the percolation of one RGG with reduced
There is a non-trivial phase transition in the interdepende, . density due to a lack of functioning supply nodes

RGGs. If \; is smaller than the percolation threshold of a We now give an overview of our approach. We de\./elop

single RGGG;(\;, d;, a?), clearly there does not exist a giantm . ; . o .
P - tech d tizat to ch t -
mutual component in the interdependent RGGs. TherefO[gapplng echniques (discretizations) to characterizéeo

» ) . . . tion of Ginipep DY the percolation of a discrete model. Map-
t)\hi - O’. vtz < {1I7t2'}' '?; WE \ll‘;” see |rv1‘the 1ne2xt S?ﬁ“ﬁn’pings from a model whose percolation threshold is unknown

ere exist percoiation thresho ® < 00, Vi € {1,2}, whic to a model with known percolation threshold are commonly
concludes the non-trivial phase transition.

Gi that th diti p th lati Temployed in the study of continuum percolation. For example
ven 9 a € conditions  for € percolation  0f,nq can study the percolation threshold of the Poisson hoole
Gi(\,di,a*) and G;(\;,d;) are the same, in most

parts of the paper we study the percolation of thodeIG()\,d) by mapping it to a triangle lattice and relating

interdependent Poisson boolean models on the same infir&te state of a site in the triangle lattice to the point preags
. A, d). By the mapping, the percolation of the triangle lattice
PIaNe, ey = (G, 1), G (v ) g, b applying <) BY vl g

; ) : . . ilpplies the percolation of7(\,d). Consequently, an upper
techniques in continuum percolation. The percolation ¥ound on the percolation threshold 6\, d) is given by A
Ginpep is defined as the existence of dnfinite mutual f ’

) ) N r which the triangle lattice percolates, a known quarffifij,
cluster, which consists of an infinite number of connecteén In general, more than one mapping can be applied, and the
EOdest'T bottml()‘l’dl)land 32().‘2’?ﬁ) where _e\?_er.); nodet key is to search for a mapping that gives a good (smaller)uppe

as at feast one supply node in the same infinite Mulygy,, 4 Following this idea, we propose different mappings
cluster. In the rest of the paper we sometimes Gseto

. that fit different conditions to obtain upper bounds on the
denote bothG;(\;, d;,a?) and G;(\;, d;). The model that it : PP
X percolation thresholds dfnpep.
refers to will be clear from the context.

C. Related work A. Ratiody/d; is small

The model which is closest to ours is the interdependentGiven Ginpep = (G1(A1,d1), Ga(A2, d2), daep), Without
lattice model, first proposed in [10] and further studied ilpss of generality we assume thét < d. Moreover, we
3], [@]. In this model, nodes in a network are representefsume thadigep > max(di /2, d2/2) = d2/2 (see the remark
by the opersites(nodes) of a square lattice, where every sitat the end of the section for comments on this assumption).
is open independently with probability. Network links are Let ¢ = |d2/d1] = max{c : d2/d1 > ¢,c € N}. For small
represented by theonds(edges) between adjacent open sites, We study the percolation offinpep by mapping it to an
Every node in one lattice is interdependent wotrerandomly independent bond percolation of a square lattice, and prove
chosen node within distance; in the other lattice. The the following result.
percolation threshold of the interdependent Iattice maslel Theorem 1. If (A1, As)
characterized as a function gf, assuming the samein both
lattices [10]. Percolation of the model where some nodes do (1 — e Mdi/8ye(] — g=hoc™di/8) 5 179,

satisfies



then Ginpep = (G1(A1,d1), G2(A2,d2), dyep) percolates, Let S| andS; denote two adjacent small squares of side length
wherec = |da/d1], di < da, anddgep > da/2. s that containss,, within S; and S, respectively. See Fif] 2

. . ... for an illustration. Sinc are open, under the
Proof. We first construct a square lattice as follows. Partition qui, v2), (v2, v3) X

the plane into small squares of side length= d; /2v/2. A second condition, nodes @ exist in 5y a_nd Sz and they
) ) re connected, because they are within distan¢®cs < ds.
large square consists ok ¢ small squares and has side lengt

¢s. The diagonalsof the large squares form the bonds of nder the first condition, nodes ¢f; form a connected path

square lattice, illustrated by the thick line segments in Hig. z?rom the small square (withirb;, marked as 7 in Figl12)

S . . containingv; to S}, and another path from the small square
The state of a bond ik is determined by the point process, .., . S
. . within .S3) containin to S5. Moreover, the two paths are
of Ginpep in the large square that contains the bond. A boc;] 2) gus 10 2 P

. . : " g ined, because any pair of nodes $) and S} are within
(v1,v2) is open if the following conditions are both satisfie distance2vZs = d,. Given that any pair of nodes within a

1) There is at least one noqle frofy in each of the two |arge square have distance at me&tes < dy/2 < dep all
small squares that contain the ends @ndv,) of the the nodes have at least one supply node inside the largessquar
bond, and they are connected through nodes f8m that contains an open bond. To conclude, if the open bonds in

all within the large square of side lengts. L form an infinite cluster, then the nodes npep form an
2) There is at least one node frof% in the large square infinite mutual cluster.
that contains the bond. The event that a bond is open depends on the point
processes in the large square that contains the bond, and is
S, S v, S5 S, independept_ of whether any other bond§ are open. As long as
—————————— X==o | the probability that a bond is opep;p», is larger thanl /2,
112 |3 which is the threshold for independent bond percolation in a
standard square lattice [12Fnipep percolate. O

The bound can be made tighter for any gives |ds/d; |,
by computing more precisely the probability that the first
condition is satisfied. We provide an example to illustrée t
computation of an improved upper bound.

Example:Consider an example whetlg = 1, dy = 2dgep =
% s=dy/2V2 3. The probability that there is at least one node frémin

the large square of side lengdi2y/2 is py = 1 — e~ 912/8,
The probability that a small square contains at least one

Fig. 2. Mapping to a square lattice for= 3. node fromGy is ps = 1 — e~*/8. The probability that the
first condition is satisfied is

'_I'he first condition is satisfied if thgre exists.a sequence of pr=p+ (1 —p)pt+ (1 —po)pt — (1 —p)p, (1)
adjacent small squares, each of which contains at least one
node in G4, from the small square that contains to the obtained by considering all the sequences of adjacent small
small square that contains. (Each small square iadjacent Squares. Sincg; computed by Eq.[{1) is larger thas for
to its eight immediate neighbors.) In the example of Fig. 2ny fixedp,, the bound on\, is smaller for any fixed\;.
these sequences include 3-5-7, 3-2-4-7, and 3-6-8-7. ] )
To obtain a closed-form formula, instead of computing the- Ratiod/d, is large
exact probability, we compute a lower bound on the probigbili In the mapping fromGinpep to the square latticd., the
that the first condition is satisfied. The probability is lewecondition for a bond to be open becomes overly restrictive
bounded by the probability that the small squares that asd./d; increases. A path joining the two large squares that
intersect the bond each contain at least one node fthm contain two adjacent bonds do not have to cross the small
given by squares that contain the common end of the two bonds. We
p1>(1— e*Ald?/S)C. obtain another upper bound on the percolation threshold of
. o ... Ginpep, given by the following theorem. This upper bound is
The probability that the second condition is satisfied is tighter than the bound in Theordth 1 for larger valueg.ofl;
—Xac?d3/8

a4 |5/]6 | cs < dy/2V2

e vy

p2=1—e Theorem 2. If (A1, \2) satisfies

Given that the two Poisson point processes-in and Gz [1_é(m+1)emlog3<1—p)} [1_é(2m+1)6mlog3<1—p)}p/ > 0.8639,
are independent, the probability that a bond is opem js. 3 3

It remains to prove that the percolation 6f implies the then Ginwpep = (G1(A1,d1), G2(A2,d2), dgep) percolates,
percolation of Ginpep. Consider two adjacent open bondsvhere p = 1 — e~Mdi/8 gy = 1 — 20" D =
(v1,v2), (v2,v3) In L. Let S; and S, denote the two adjacentmin(da/v/10, dgep/V'5),m = [2D/d1 |, di < d2, and dgep >
large squares of side length that contain the two open bonds.ds /2.



This upper bound is obtained by mappidgnpep, t0 @ square that has the same centeSasThe reason for consid-
dependent bond percolation mode),. The mapping from ering R’ and .S} is that the existence of the two crossing paths
the Poisson boolean modél(\, d) to Lp was first proposed over R’ and S} is entirely determined by the point process
in [L3] to study the percolation threshold 6%\, d), and later within R, while the existence of links within distaneefrom
applied to the study of the robustness of random geomettie boundaries (and thus the crossings oikgmay depend
networks [14]. We briefly describe the method in the previous nodes outsidé.
literature that use$ , to study the percolation a¥(\, d), and If two adjacent bonds are open, the paths3if\, d) in the
then prove Theorein 2 based on a similar method. two rectangles are joined. To see this, note that in Eig. 4,

1) 1-dependent bond percolation modeh: In the stan- if the black and blue bonds (same direction) are both open,
dard bond percolation model on a square latfigehe event the crossings 1 and 2 intersect. If the black and red bonds
that a bond is open is independent of the event that any otfeerpendicular) are both open, the crossings 1 and 3 interse
bond is open. If in a square lattide,, the event that a bond is
open may depend on the event that its adjacent bond is open,

but is independent of the event that any non-adjacent bond is i . ! °
open, thenl  is a1-dependent bond percolation moadesl a i \\.k L 2 ! b

square lattice. With the additional restriction that eacmd
is open with an identical probability, an upper bound on the
percolation threshold of. 5 is 0.8639[[13].

The 1-dependent bond percolation modigl can be used to
study the percolation of” where the points are generated by
homogeneous POISS_Oﬂ point pr(_)cesses. To constructa rgap9|8. 4. Crossings over rectangles associated with two adfaspen bonds
from G’ to Lp, consider two adjacend x D squaresS; and  are joined.

S, and let R be the rectangle formed by the two squares.

A bond (vy,v2) that connects the centers 6f and S, is  If the square latticeL, percolates, open bonds form an
associated withk. Figure3 illustrates the square lattice formednfinite cluster. Paths irt/(}, d) across the rectangles associ-
by the bonds, represented by thick line segments. ated with the open bonds are connected and form an infinite
cluster. Therefore, a node density above whigh percolates
R g e ; is an upper bound on the percolation threshold704, d).
*isl,,l 5521, 153, ; 2) Proof of Theoreril2We mapGinpep t0 Lp by letting
i : E a bond inLp be open if the following three conditions are
. T satisfied in its associated rectangle= S;US5. The size of the
Sty 5551;.5& R rectangle satisfie® = min(dz/v/10, dgep/V/5) > da/2V/5.
: b 1) A path fromG; crossesR’ horizontally, whereR’ is a

(2D —2d;) x (D —2d;) rectangle that has the same center
as k.
2) A path fromG; crossesS| vertically, whereS] is a(D—

) 2dy) x (D — 2d,) square that has the same centefSas
Lemma 3. Let the state of bon¢, v2) be determined by the 3) There is at least one node frof, in R.

homogeneous Poisson point processe§ onside R, and the
conditions for a bond to be open be identical for all bond
Then the bonds form a 1-dependent bond percolation mo
Lp with identical bond open probabilities.

Fig. 3. Square latticd., formed by the bonds.

To bound the percolation thresholds 6finpep in the
echnical report[[15], we prove that the percolation of,
lies the percolation offnpep, and compute the probability
that the three conditions are satisfied using a method simila
The proof of this lemma can be found in the technical repoi@ [16].
[15]. By properly setting the conditions for a bond to be gpen Remark:We have assumed thale, > max(d; /2, d2/2) =
the percolation ofLp can imply the percolation ofy’. We d2/2 in this section. To see that this is a reasonable assump-
first look at an example if [12] that studies the percolatibn éon, note that nodes i, that have at least one functioning
G()\,d), and extend the technique to StuGyhpep- supply node are restricted in the regiffgep, Where Rgep is a
Example [12]: Let a bond be open if a path i6'(), d) union of disks with radiusiqep centered at nodes in the giant
crossdd R’ horizontally and another path i@(), d) crosses component ofG. If Raep is fragmented, it is not likely for
Sy vertically, whereR’ is a (2D — 2d) x (D — 2d) rectangle disks of radiusd,/2 < d»/2 centered at random locations
that has the same center AsandS/ is a (D —2d) x (D —2d) within Rqep to overlap, and it is not likely that a functioning
giant component will exist inGy, unless the node density
A path crosses a rectangl®’ = [v1,22] x [y1,2] horizontally if the in G, is large. Therefore, the interdependent distadgs

path consists of a sequence of connected nadess,...,vn—1,vn, aNd  should be |arge enough so th&Ye, is a connected region
. / P ’

v2,...,vp—1 are IR, z(v1) < z1,2(vn) 2 2, 1 < y(v1),y(vn) < ¢ id al o de density @ . Th '

y2, wherez(v;) is the z-coordinate ofv; andy(v;) is the y-coordinate of O @vOld a largé minimum node density (. Ihe region

v;. A path crosses a rectangle vertically is defined analogousl Rgep can be made larger by increasing eitheror d. Setting



ddep > d2/2 avoids increasing\; high above the percolation process forms the two crossings is above 0.8639, is a lower
threshold ofG», in order for Ryep to be connected. In Sectionbound on the percolation threshold G{\, d).
V] we propose more general approaches that do not requAre

this assumption. Upper bounds foGinep

Two mutual componentd/ = V; UV, and M = V; U Vs
IV. CONFIDENCE INTERVALS FOR PERCOLATION form one mutual component if and only if; and V; are
THRESHOLDS connected inG; (Vi € {1,2}). The necessity of the condition
In the previous section, we discussed a method of mappilsgobvious. To see that this condition is sufficient, notet tha
the percolation ofi|nipep to the percolation of the 1-dependengvery node in the connected component formed/bgand V;
bond percolation modelL . The previous mapping and thehas at least one supply node which belongs to the connected
mapping that we consider in this section both satisfy tte®@mponent formed by; and V; (Vi,j € {1,2},i # j).
following: 1) the percolation of., implies the percolation The condition can be generalized naturally for more than two
of Ginipep; 2) the event that determines the state of a bor@utual components to form one mutual component.
depends only on the point process within its associated rect i _
angle, thus preserving the 1-dependent property. The evéforithm 1 An algorithm that greedily computes a mutual
probability can be computed or bounded analytically in tHePmponent/9¢¢}(S) in region S.
previous section. In contrast, in this section, we consigents 1) Identify the largest connected componeWf(S) in
whose probabilities are larger under the same point presess  G;(S), whereG;(S) consists of the nodes and linksGf
but can only be evaluated by simulation. Since the events tha in S. If there are multiple largest connected components,
we consider in this section are more likely to occur under the apply any deterministic tie-breaking rule.¢, choose the
same point processes, the mappings yield tighter bounds. component that contains a nodes with the smallest
Our mappings fron@inpep to L p extend the mappings from coordinate).
G(\,d) to Lp proposed in[[13]. For completeness, we first2) Remove nodes ii¥,’(S) that do not have supply nodes
briefly summarize the mappings in[13] that determine upper in V2(S) (¥i,j € {1,2},i # j). Identify the largest
and lower bounds on the percolation threshold=gf\, d). connected componerit!(S) formed by the remaining
Upper bound forG(\,d) [L3]: Recalling Fig[3, the event nodes inV?(S) (Vi € {1,2}), and apply the same tie-
that a bond(vy, v2) € Lp is open is determined by the point breaking rule.
process of3(), d) in the rectanglek = S;US,, whereS; and  3) Repeat step 2 untli* ™ (S) = VF(S) (Vi € {1,2}). Let
S, are squares. Le¥; denote the largest component formed M9 S) = VF(S) U VF(9).
by the points ofG()\,d) in S;. If V; is the unique largest
component inS; (Vi € {1,2}) andV; andV; are connected, et a bond(v;,v2) in Lp be open if the two components
then the bond is open. Otherwise, the bond is closed. Moreedy G ) and M9 S,) form one mutual component,
If Lp percolates, open bonds form an infinite cluster. Aghere N/9ed(S;) is computed by Algorithni]l. See the
a result, the largest components in the squares that intersgchnical report[[15] for the rationale behind this algumit
the open bonds are connecteddi{),d) and they form an since a79%eed(s;) is unique in any squaré;, a connected
infinite cluster. Therefore, a node densityabove which the clyster in L, implies that {179 S;)} form one mutual
probability that a bond is open is larger than 0.8639, is @bmponent inGinpep, Wheres; are the squares that intersect
upper bound on the percolation threshold(ef}, d). the open bonds in the connected cluster. If the probabhigy t
Lower bound forG:(A, d) [L3]: Let the connection process a bond is open is larger than 0.8639; percolates an@niep
of G(A,d) be the union of nodes and links @@(\, d). Let also percolate.
the complemenbf the connection process be the union of An alternative condition for a bond to be open is that nodes
the empty space that do not intersect nodes or links. jif p79eedy R) form a horizontal crossing over rectangh
the complement of the connection process form a connectgli a vertical crossing over squa$é in both graphs (recall
infinite region, then all the connected clustersif\, d) have  Fig.[4 and the condition for two mutual components to form
finite sizes and(\, d) does not percolaté [13]. [17]. Considelpne mutual component). In order for the existence of the two
the complement of the connection process in rectadgle crossings to only depend on the point processeg,ifin the
Let a bond (inLp) associated with rectangl& be open if definition of R’ and S/, d = max(dy, dz, ddep)-
the complement process forms a horizontal crofsingr the  An upper bound on the percolation threshold can be ob-
rectangle’ and a vertical crossing over the squae tained by either approach. The smaller bound obtained by the

If Lp percolates, the complement process forms an infini§go approaches is a better upper bound on the percolation
region andG(\,d) does not percolate. To conclude, a nodgyreshold OfGinpep-
density, under which the probability that the complement

B. Lower bounds folnipep

2 . . . . .

The complement ofaconnectlon process formsahonzqrmbmg‘over In GIntDepy the connection process consists of nodes and
a rectangle if a curve in the rectangle touches the left agttt boundaries of links i | id the h .
the rectangle and the curve does not intersect any nodesksr The vertical 'INKS 1N mutual components. To avoid the heavy ?Ompytat'on
crossing of the complement process is defined analogously. of mutual components, we study another model in which the




connection procesB; of G, in the new modetiominate3 the higher confidence. This suggests thatkif< 5, with 99.5%
connection proces®; of G; in Ginpep (Vi € {1,2}). As a confidencep > 0.8639 and the 1-dependent bond percolation
consequence, the complement of the connection proﬁ,‘ﬁss model L, percolates giveri, Az2).

of G; in the new model is dominated by¢ (Vi € {1,2}). If Based on this method, with9.5% confidence an upper
Pf percolates, the®® percolates and’; does not percolate. bound on the percolation threshold Gfypep Can be obtained

If either P, or P, does not percolate, the@npep do Not by declaring a bond to be open using the method in Section
percolate. Thus, node densities under which at least onel@fA] and with 99.5% confidence a lower bound can be
Pf and ]55 percolates are lower bounds on the percolatiasbtained by declaring a bond to be open using the method
thresholds 0fGinwpep. in Section1V-B. For a fixed\3, a99% confidence interval for

The new model can be viewed to haverddaxed supply A} is obtained, given by the interval between the upper and
requirement. In this model, every node (as opposed to nodewer bounds. Confidence intervals for different percolati
in the same mutual component) is viewed as a valid supglyesholds can be obtained by changing the valuajoénd
node for nodes in the other graph. A nodge in G; is repeating the computation. We make a similar remark as
removed if and only if there is no node i@, within the in [13]. The confidence intervals are rigorous, and the only
interdependent distanage, from b; (Vi,j € {1,2},7 # j). uncertainty is caused by the stochastic point process in the
After all such nodes are removed, the remaining nodes 2 x D rectangle. This is in contrast with the confidence
G; are connected if their distances are within the connectiartervals obtained by estimating whethéfinpep, percolate
distanced;. The computation of the connection procefssis based on extrapolating the observations of simulations in a
efficient and avoids the computation of mutual componentsfimite region (which is usually not very large because of fedi
Ginpep through multiple iterations. computational power).

The connection procesél- in the new model dominates
P; in the original modelGnpep. On the one hand, for any
realization, all the links inP; are present in?;, because all  The simulation-based confidence intervals are much tighter
the nodes in a mutual component have supply nodes, and litikgn the analytical bounds. Given thét = dy = 2dgep = 1,
between these nodes are present in the new model as waiid A5 = 2, the upper and lower bounds o are 2.25 and
On the other hand, in the new model, nodes in a connecte80, respectively, both witl99.5% confidence. In contrast,
component; in G; may depend on nodes in several connecté&yen if A3 — oo, the analytical upper bound oXi is no less
components irG;. In contrast, inGintwep, v may be divided than 3.372, which is the best available analytical uppendou
into several mutual components and links do not exist batwe®r a singleG; [11]. Confidence intervals for the percolation
two disjoint mutual components. thresholds are plotted in Figl 5.

An algorithm that computes a lower bound on the percola-
tion threshold oiGnpep is as follows. First obtain the connec-
tion processP; in the new model. Next in th2D x D rectangle
R, consider the complement of the connection prodé‘ssi_et
p; denote the probability that there is a horizontal crossir 7h
over R’ and a vertical crossing oves) in the processP?, 6l
where R’ and S| are the same as before. A lower bound o

D. Numerical results

di =0.5,dy = 1,dgep = 0.5

the percolation threshold @ npep is given by node densities ~er
under whichmax(p;, p2) > 0.8639. ar
C. Confidence intervals il H\} d :‘17}: L dyey = 0.5
. . 2
The probability that a bond is open can be represented = T
an integral that depends on the point processes in the gdetar H N 3 4 5 6 7 8 N
R. However, direct calculation of the integral is intractgtgo A3

instead the integral is evaluated by simulation. In evagf of
the simulation, nodes id/; and G, are randomly generated
by the Poisson point processes with densitigsand s,
respectively. The events that a bond is open are independent

in different trials. Let the probability that a bond is opea b V. ROBUSTNESS OF INTERDEPENDENRGGS UNDER
p given (A1, \2). The probability that a bond is closed in RANDOM FAILURES AND GEOGRAPHICAL ATTACKS

out of NV trials follows a binomial distribution. The interval Removing nodes independently at random with the same
0.8639,1] is @ 99.5% confidence interval [18] fop, given probability in an RGG amounts to reducing the node density
that N = 100 andk = 5. If k < 5, p € [0.8639,1] with a of the Poisson point process. To study the robustness of
3 ) ) ) ) ) two interdependent RGGS; and G2 under random failures,
A connection process dominates another if the nodes ang imkhe first

process form a superset of the nodes and links in the secaegs, for any the ﬁrSt_ step Is to Obtam_ the upper and lower bounds _On
realization ofG. percolation thresholds. With the bounds, we can determine

Fig. 5. The intervals between bars & confidence intervals for percola-
tion thresholds. The confidence intervals of two differéhiipep are plotted.



. . . -
which graph is able to resist more random nqde removals, iy I |_|
by comparing the gap between the node densjtyand the
percolation threshold} given \; (i,j € {1,2},i # j). The
graph that can resist a smaller fraction of node removals is —|
the bottleneck for the robustness of the interdependentfRGG
Besides, we can compute the maximum fraction of nodes that
can be randomly removed from two graphs while guaranteeing
the interdependent RGGS. to be percolated. . Fig. 6. Open bonds form a connected path across rectanglasdi ;.

We next show that the interdependent RGGs still percolate
after a geographical attack that removes nodes in a finite con
nected region, if the node densities of the two graphs béfere percolate. The curve can be used to study the robustness of
attack are above anypper boundn the percolation thresholdsinterdependent RGGs to random failures. Moreover, if the
obtained in this paper (either analytical or simulatioisd®). node densities are above any upper bound on the percolation
Recall that we obtained upper bounds on the percolatithresholds obtained in this paper, then the interdependent
thresholds ofG/nwep by mapping the percolation affinep RGGs remain percolated after a geographical attack.
to the bond percolation of either a standard square lattice
or the 1-dependent square lattidg,. Moreover, whether a
bonde is open is entirely determined by the point processeBl N:( Pafaﬂde,hg?_eibily K. Turi:f]yn, and E. !\godié(ljno, “Modejithe irgﬁgct
H ) . . . Ol communication loss on the power grid under emergencyral
in a finite reglonRe that contalr)s. the bond. A_fter removing  |EcE smartGridCommz015.
nodes ofGnipep iN @ connected finite geographical region, the2) s. v. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, andHgvlin,
state of a bond may change from open to closed onlyfif “Catastrophic cascade of failures in interdependent ridsyoNature
intersects the attack region. L&, be the union ofR,. that vol. 464, no, 7291, pp. 1025-1028, 2010.
) g : f M HR ¢ [3] A. Bashan, Y. Berezin, S. V. Buldyrev, and S. Havlin, “Tk&treme
intersects the attack region. The regiBp is also a connected vulnerability of interdependent spatially embedded neks Nature

finite region. As long ad. or Lp still percolates after setting " $hé’SiC$V0|-A9-BHOh10,|\aPM 6%7-67_21 2?313L' 4. Haviihocalized

. . berezin, A. bashan, M. M. bDanziger, D. LI, an . Havlfhocalize
bonds inf to be ClosedG'mD_eD perCOIate_" o attacks on spatially embedded networks with dependehcResentific
Results from the percolation theory indeed indicate that reports vol. 5, 2015.

setting all the bonds in a finite regiofi; to be closed does [5] ;]-_lShao,_ S. V. IBclledyrtt\eA\//, E H?vlin, a{}ﬂ H. ltE-IStanl%t‘;gmf of
. : aliures In coupled network systems with muitiplie sup naence

not affect t_h_e percolation oL or Lp. F_or any percqlate(L, relations.” Phys. Rev. Evol. 83, p. 036116, Mar 2011.

the probability that there exists a horizontal crossing @ [6] O. Yagan, D. Qian, J. Zhang, and D. Cochran, “Optimabetion

bonds over akl x [ rectangle approaches 1 for any integer of interconnecting links in cyber-physical systems: Id&pendence,

cascading failures, and robustned€EE Transactions on Parallel and
k> 1 _aSl — 0 (Lemma 8 on Page 64 OED]'Z])‘ The Distributed Systemsvol. 23, no. 9, pp. 1708-1720, 2012.
percolation ofL (after setting all bonds iy to be closed) [7] M. PenroseRandom geometric graphs Oxford Univ. Press, 2003.
is justified by the fact that the connected open bonds acrof8 Régl;/(lseester and R. Rogontinuum percolation Cambridge Univ. Press,
. 1 .
rectangles form a square annulus that does not mteR?Ct 9] P. Balister, A. Sarkar, and B. Bollobas, “Percolatioconnectivity,

(shown in Fig[®), which is a standard approach to prove the coverage and colouring of random geometric graphsHandbook of

|
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