49,196 research outputs found

    Robustness and Randomness

    Get PDF
    Robustness problems of computational geometry algorithms is a topic that has been subject to intensive research efforts from both computer science and mathematics communities. Robustness problems are caused by the lack of precision in computations involving floating-point instead of real numbers. This paper reviews methods dealing with robustness and inaccuracy problems. It discussed approaches based on exact arithmetic, interval arithmetic and probabilistic methods. The paper investigates the possibility to use randomness at certain levels of reasoning to make geometric constructions more robust

    Physical Randomness Extractors: Generating Random Numbers with Minimal Assumptions

    Get PDF
    How to generate provably true randomness with minimal assumptions? This question is important not only for the efficiency and the security of information processing, but also for understanding how extremely unpredictable events are possible in Nature. All current solutions require special structures in the initial source of randomness, or a certain independence relation among two or more sources. Both types of assumptions are impossible to test and difficult to guarantee in practice. Here we show how this fundamental limit can be circumvented by extractors that base security on the validity of physical laws and extract randomness from untrusted quantum devices. In conjunction with the recent work of Miller and Shi (arXiv:1402:0489), our physical randomness extractor uses just a single and general weak source, produces an arbitrarily long and near-uniform output, with a close-to-optimal error, secure against all-powerful quantum adversaries, and tolerating a constant level of implementation imprecision. The source necessarily needs to be unpredictable to the devices, but otherwise can even be known to the adversary. Our central technical contribution, the Equivalence Lemma, provides a general principle for proving composition security of untrusted-device protocols. It implies that unbounded randomness expansion can be achieved simply by cross-feeding any two expansion protocols. In particular, such an unbounded expansion can be made robust, which is known for the first time. Another significant implication is, it enables the secure randomness generation and key distribution using public randomness, such as that broadcast by NIST's Randomness Beacon. Our protocol also provides a method for refuting local hidden variable theories under a weak assumption on the available randomness for choosing the measurement settings.Comment: A substantial re-writing of V2, especially on model definitions. An abstract model of robustness is added and the robustness claim in V2 is made rigorous. Focuses on quantum-security. A future update is planned to address non-signaling securit

    Effect of Noise on Patterns Formed by Growing Sandpiles

    Full text link
    We consider patterns generated by adding large number of sand grains at a single site in an abelian sandpile model with a periodic initial configuration, and relaxing. The patterns show proportionate growth. We study the robustness of these patterns against different types of noise, \textit{viz.}, randomness in the point of addition, disorder in the initial periodic configuration, and disorder in the connectivity of the underlying lattice. We find that the patterns show a varying degree of robustness to addition of a small amount of noise in each case. However, introducing stochasticity in the toppling rules seems to destroy the asymptotic patterns completely, even for a weak noise. We also discuss a variational formulation of the pattern selection problem in growing abelian sandpiles.Comment: 15 pages,16 figure

    Robustness of Device Independent Dimension Witnesses

    Full text link
    Device independent dimension witnesses provide a lower bound on the dimensionality of classical and quantum systems in a "black box" scenario where only correlations between preparations, measurements and outcomes are considered. We address the problem of the robustness of dimension witnesses, namely that to witness the dimension of a system or to discriminate between its quantum or classical nature, even in the presence of loss. We consider the case when shared randomness is allowed between preparations and measurements and we provide a threshold in the detection efficiency such that dimension witnessing can still be performed.Comment: 8 pages, 5 figures, published versio

    Unbiased Global Optimization of Lennard-Jones Clusters for N <= 201 by Conformational Space Annealing Method

    Full text link
    We apply the conformational space annealing (CSA) method to the Lennard-Jones clusters and find all known lowest energy configurations up to 201 atoms, without using extra information of the problem such as the structures of the known global energy minima. In addition, the robustness of the algorithm with respect to the randomness of initial conditions of the problem is demonstrated by ten successful independent runs up to 183 atoms. Our results indicate that the CSA method is a general and yet efficient global optimization algorithm applicable to many systems.Comment: revtex, 4 pages, 2 figures. Physical Review Letters, in pres
    • …
    corecore