126,960 research outputs found

    User experience and robustness in social virtual reality applications

    Get PDF
    Cloud-based applications that rely on emerging technologies such as social virtual reality are increasingly being deployed at high-scale in e.g., remote-learning, public safety, and healthcare. These applications increasingly need mechanisms to maintain robustness and immersive user experience as a joint consideration to minimize disruption in service availability due to cyber attacks/faults. Specifically, effective modeling and real-time adaptation approaches need to be investigated to ensure that the application functionality is resilient and does not induce undesired cybersickness levels. In this thesis, we investigate a novel ‘DevSecOps' paradigm to jointly tune both the robustness and immersive performance factors in social virtual reality application design/operations. We characterize robustness factors considering Security, Privacy and Safety (SPS), and immersive performance factors considering Quality of Application, Quality of Service, and Quality of Experience (3Q). We achieve “harmonized security and performance by design” via modeling the SPS and 3Q factors in cloud-hosted applications using attack-fault trees (AFT) and an accurate quantitative analysis via formal verification techniques i.e., statistical model checking (SMC). We develop a real-time adaptive control capability to manage SPS/3Q issues affecting a critical anomaly event that induces undesired cybersickness. This control capability features a novel dynamic rule-based approach for closed-loop decision making augmented by a knowledge base for the SPS/3Q issues of individual and/or combination events. Correspondingly, we collect threat intelligence on application and network based cyber-attacks that disrupt immersiveness, and develop a multi-label K-NN classifier as well as statistical analysis techniques for critical anomaly event detection. We validate the effectiveness of our solution approach in a real-time cloud testbed featuring vSocial, a social virtual reality based learning environment that supports delivery of Social Competence Intervention (SCI) curriculum for youth. Based on our experiment findings, we show that our solution approach enables: (i) identification of the most vulnerable components that impact user immersive experience to formally conduct risk assessment, (ii) dynamic decision making for controlling SPS/3Q issues inducing undesirable cybersickness levels via quantitative metrics of user feedback and effective anomaly detection, and (iii) rule-based policies following the NIST SP 800-160 principles and cloud-hosting recommendations for a more secure, privacy-preserving, and robust cloud-based application configuration with satisfactory immersive user experience.Includes bibliographical references (pages 133-146)

    Applications of Temporal Graph Metrics to Real-World Networks

    Get PDF
    Real world networks exhibit rich temporal information: friends are added and removed over time in online social networks; the seasons dictate the predator-prey relationship in food webs; and the propagation of a virus depends on the network of human contacts throughout the day. Recent studies have demonstrated that static network analysis is perhaps unsuitable in the study of real world network since static paths ignore time order, which, in turn, results in static shortest paths overestimating available links and underestimating their true corresponding lengths. Temporal extensions to centrality and efficiency metrics based on temporal shortest paths have also been proposed. Firstly, we analyse the roles of key individuals of a corporate network ranked according to temporal centrality within the context of a bankruptcy scandal; secondly, we present how such temporal metrics can be used to study the robustness of temporal networks in presence of random errors and intelligent attacks; thirdly, we study containment schemes for mobile phone malware which can spread via short range radio, similar to biological viruses; finally, we study how the temporal network structure of human interactions can be exploited to effectively immunise human populations. Through these applications we demonstrate that temporal metrics provide a more accurate and effective analysis of real-world networks compared to their static counterparts.Comment: 25 page

    Multi-agent decision-making dynamics inspired by honeybees

    Full text link
    When choosing between candidate nest sites, a honeybee swarm reliably chooses the most valuable site and even when faced with the choice between near-equal value sites, it makes highly efficient decisions. Value-sensitive decision-making is enabled by a distributed social effort among the honeybees, and it leads to decision-making dynamics of the swarm that are remarkably robust to perturbation and adaptive to change. To explore and generalize these features to other networks, we design distributed multi-agent network dynamics that exhibit a pitchfork bifurcation, ubiquitous in biological models of decision-making. Using tools of nonlinear dynamics we show how the designed agent-based dynamics recover the high performing value-sensitive decision-making of the honeybees and rigorously connect investigation of mechanisms of animal group decision-making to systematic, bio-inspired control of multi-agent network systems. We further present a distributed adaptive bifurcation control law and prove how it enhances the network decision-making performance beyond that observed in swarms

    Measuring robustness of community structure in complex networks

    Full text link
    The theory of community structure is a powerful tool for real networks, which can simplify their topological and functional analysis considerably. However, since community detection methods have random factors and real social networks obtained from complex systems always contain error edges, evaluating the robustness of community structure is an urgent and important task. In this letter, we employ the critical threshold of resolution parameter in Hamiltonian function, γC\gamma_C, to measure the robustness of a network. According to spectral theory, a rigorous proof shows that the index we proposed is inversely proportional to robustness of community structure. Furthermore, by utilizing the co-evolution model, we provides a new efficient method for computing the value of γC\gamma_C. The research can be applied to broad clustering problems in network analysis and data mining due to its solid mathematical basis and experimental effects.Comment: 6 pages, 4 figures. arXiv admin note: text overlap with arXiv:1303.7434 by other author

    Ultrafast Consensus in Small-World Networks

    Get PDF
    In this paper, we demonstrate a phase transition phenomenon in algebraic connectivity of small-world networks. Algebraic connectivity of a graph is the second smallest eigenvalue of its Laplacian matrix and a measure of speed of solving consensus problems in networks. We demonstrate that it is possible to dramatically increase the algebraic connectivity of a regular complex network by 1000 times or more without adding new links or nodes to the network. This implies that a consensus problem can be solved incredibly fast on certain small-world networks giving rise to a network design algorithm for ultra fast information networks. Our study relies on a procedure called "random rewiring" due to Watts & Strogatz (Nature, 1998). Extensive numerical results are provided to support our claims and conjectures. We prove that the mean of the bulk Laplacian spectrum of a complex network remains invariant under random rewiring. The same property only asymptotically holds for scale-free networks. A relationship between increasing the algebraic connectivity of complex networks and robustness to link and node failures is also shown. This is an alternative approach to the use of percolation theory for analysis of network robustness. We also show some connections between our conjectures and certain open problems in the theory of random matrices
    corecore