26,064 research outputs found

    Disturbance Observer-based Robust Control and Its Applications: 35th Anniversary Overview

    Full text link
    Disturbance Observer has been one of the most widely used robust control tools since it was proposed in 1983. This paper introduces the origins of Disturbance Observer and presents a survey of the major results on Disturbance Observer-based robust control in the last thirty-five years. Furthermore, it explains the analysis and synthesis techniques of Disturbance Observer-based robust control for linear and nonlinear systems by using a unified framework. In the last section, this paper presents concluding remarks on Disturbance Observer-based robust control and its engineering applications.Comment: 12 pages, 4 figure

    Automating control system design via a multiobjective evolutionary algorithm

    Get PDF
    This chapter presents a performance-prioritized computer aided control system design (CACSD) methodology using a multi-objective evolutionary algorithm. The evolutionary CACSD approach unifies different control laws in both the time and frequency domains based upon performance satisfactions, without the need of aggregating different design criteria into a compromise function. It is shown that control engineers' expertise as well as settings on goal or priority for different preference on each performance requirement can be easily included and modified on-line according to the evolving trade-offs, which makes the controller design interactive, transparent and simple for real-time implementation. Advantages of the evolutionary CACSD methodology are illustrated upon a non-minimal phase plant control system, which offer a set of low-order Pareto optimal controllers satisfying all the conflicting performance requirements in the face of system constraints

    Magnetic Actuators and Suspension for Space Vibration Control

    Get PDF
    The research on microgravity vibration isolation performed at the University of Virginia is summarized. This research on microgravity vibration isolation was focused in three areas: (1) the development of new actuators for use in microgravity isolation; (2) the design of controllers for multiple-degree-of-freedom active isolation; and (3) the construction of a single-degree-of-freedom test rig with umbilicals. Described are the design and testing of a large stroke linear actuator; the conceptual design and analysis of a redundant coarse-fine six-degree-of-freedom actuator; an investigation of the control issues of active microgravity isolation; a methodology for the design of multiple-degree-of-freedom isolation control systems using modern control theory; and the design and testing of a single-degree-of-freedom test rig with umbilicals
    • …
    corecore