948 research outputs found

    Discrete-time Robust PD Controlled System with DOB/CDOB Compensation for High Speed Autonomous Vehicle Path Following

    Full text link
    Autonomous vehicle path following performance is one of significant consideration. This paper presents discrete time design of robust PD controlled system with disturbance observer (DOB) and communication disturbance observer (CDOB) compensation to enhance autonomous vehicle path following performance. Although always implemented on digital devices, DOB and CDOB structure are usually designed in continuous time in the literature and also in our previous work. However, it requires high sampling rate for continuous-time design block diagram to automatically convert to corresponding discrete-time controller using rapid controller prototyping systems. In this paper, direct discrete time design is carried out. Digital PD feedback controller is designed based on the nominal plant using the proposed parameter space approach. Zero order hold method is applied to discretize the nominal plant, DOB and CDOB structure in continuous domain. Discrete time DOB is embedded into the steering to path following error loop for model regulation in the presence of uncertainty in vehicle parameters such as vehicle mass, vehicle speed and road-tire friction coefficient and rejecting external disturbance like crosswind force. On the other hand, time delay from CAN bus based sensor and actuator command interfaces results in degradation of system performance since large negative phase angles are added to the plant frequency response. Discrete time CDOB compensated control system can be used for time delay compensation where the accurate knowledge of delay time value is not necessary. A validated model of our lab Ford Fusion hybrid automated driving research vehicle is used for the simulation analysis while the vehicle is driving at high speed. Simulation results successfully demonstrate the improvement of autonomous vehicle path following performance with the proposed discrete time DOB and CDOB structure

    MME-EKF-Based Path-Tracking Control of Autonomous Vehicles Considering Input Saturation

    Get PDF
    This paper investigates the path-tracking control issue for autonomous ground vehicles with the integral sliding mode control (ISMC) considering the transient performance improvement. The path-tracking control is converted into the yaw stabilization problem, where the sideslip-angle compensation is adopted to reduce the steady-state errors, and then the yaw-rate reference is generated for the path-tracking purpose. The lateral velocity and roll angle are estimated with the measurement of the yaw rate and roll rate. Three contributions have been made in this paper: first, to enhance the estimation accuracy for the vehicle states in the presence of the parametric uncertainties caused by the lateral and roll dynamics, a robust extended Kalman filter is proposed based on the minimum model error algorithm; second, an improved adaptive radial basis function neural network (RBFNN) considering the approximation error adaptation is developed to compensate for the uncertainties caused by the vertical motion; third, the RBFNN and composite nonlinear feedback (CNF) based ISMC is developed to achieve the yaw stabilization and enhance the transient tracking performance considering the input saturation of the front steering angle. The overall stability is proved with Lyapunov function. Finally, the superiority of the developed control strategy is verified by comparing with the traditional CNF with high-fidelity CarSim-MATLAB simulations

    The Limited Integrator Model Regulator And its Use in Vehicle Steering Control

    Full text link
    Unexpected yaw disturbances like braking on unilaterally icy road, side wind forces and tire rupture are very difficult to handle by the driver of a road vehicle, due to his/her large panic reaction period ranging between 0.5 to 2 seconds. Automatic driver assist systems provide counteracting yaw moments during this driver panic reaction period to maintain the stability of the yaw dynamics of the vehicle. An active steering based driver assist system that uses the model regulator control architecture is introduced and used here for yaw dynamics stabilization in such situations. The model regulator which is a special form of a two degree of freedom control architecture is introduced and explained in detail in a tutorial fashion whereby its integral action capability, among others, is also shown. An auxiliary steering actuation system is assumed and a limited integrator version of the model regulator based steering controller is developed in order not to saturate the auxiliary steering actuator. This low frequency limited integrator implementation also allows the driver to take care of low frequency steering and disturbance rejection tasks. Linear simulation results are used to demonstrate the effectiveness of the proposed method

    Torque vectoring based drive assistance system for turning an electric narrow tilting vehicle

    Get PDF
    The increasing number of cars leads to traffic congestion and limits parking issue in urban area. The narrow tilting vehicles therefore can potentially become the next generation of city cars due to its narrow width. However, due to the difficulty in leaning a narrow tilting vehicle, a drive assistance strategy is required to maintain its roll stability during a turn. This article presents an effective approach using torque vectoring method to assist the rider in balancing the narrow tilting vehicles, thus reducing the counter-steering requirements. The proposed approach is designed as the combination of two torque controllers: steer angle–based torque vectoring controller and tilting compensator–based torque vectoring controller. The steer angle–based torque vectoring controller reduces the counter-steering process via adjusting the vectoring torque based on the steering angle from the rider. Meanwhile, the tilting compensator–based torque vectoring controller develops the steer angle–based torque vectoring with an additional tilting compensator to help balancing the leaning behaviour of narrow tilting vehicles. Numerical simulations with a number of case studies have been carried out to verify the performance of designed controllers. The results imply that the counter-steering process can be eliminated and the roll stability performance can be improved with the usage of the presented approach

    A Review of Active Yaw Control System for Vehicle Handling and Stability Enhancement

    Get PDF
    Yaw stability control systemplays a significant role in vehicle lateral dynamics in order to improve the vehicle handling and stability performances. However, not many researches have been focused on the transient performances improvement of vehicle yaw rate and sideslip tracking control. This paper reviews the vital elements for control system design of an active yaw stability control system; the vehicle dynamic models, control objectives, active chassis control, and control strategies with the focus on identifying suitable criteria for improved transient performances. Each element is discussed and compared in terms of their underlying theory, strengths, weaknesses, and applicability. Based on this, we conclude that the sliding mode control with nonlinear sliding surface based on composite nonlinear feedback is a potential control strategy for improving the transient performances of yaw rate and sideslip tracking control

    On the Experimental Analysis of Integral Sliding Modes for Yaw Rate and Sideslip Control of an Electric Vehicle with Multiple Motors

    Get PDF
    With the advent of electric vehicles with multiple motors, the steady-state and transient cornering responses can be designed and implemented through the continuous torque control of the individual wheels, i.e., torque-vectoring or direct yaw moment control. The literature includes several papers on sliding mode control theory for torque-vectoring, but the experimental investigation is so far limited. More importantly, to the knowledge of the authors, the experimental comparison of direct yaw moment control based on sliding modes and typical controllers used for stability control in production vehicles is missing. This paper aims to reduce this gap by presenting and analyzing an integral sliding mode controller for concurrent yaw rate and sideslip control. A new driving mode, the Enhanced Sport mode, is proposed, inducing sustained high values of sideslip angle, which can be limited to a specified threshold. The system is experimentally assessed on a four-wheel-drive electric vehicle. The performance of the integral sliding mode controller is compared with that of a linear quadratic regulator during step steer tests. The results show that the integral sliding mode controller significantly enhances the tracking performance and yaw damping compared to the more conventional linear quadratic regulator based on an augmented singletrack vehicle model formulation. © 2018, The Korean Society of Automotive Engineers and Springer-Verlag GmbH Germany, part of Springer Natur

    Inertial Navigation and Position Uncertainty during a Blind Safe Stop of an Autonomous Vehicle

    Get PDF
    This work considers the problem of position and position-uncertainty estimation for atonomous vehicles during power black-out, where it cannot be assumed that any position data is accessible. To tackle this problem, the position estimation will instead be performed using power separated and independent measurement devices, including one inertial 6 Degrees of Freedom (DOF) measurement unit, four angular wheel speed sensors and one pinion angle sensor. The measurement unit\u27s sensors are initially characterized in order to understand conceptual limitations of the inertial navigation and also to be used in a filtering process. Measurement models are then fused together with vehicle dynamics process models using the architecture of an Extended Kalman Filter (EKF). Two different EKF filter concepts are developed to estimate the vehicle position during a safe stop; one simpler filter for smooth manoeuvres and a complex filter for aggressive manoeuvres. Both filter designs are tested and evaluated with data gathered from an experimental vehicle for selected manoeuvres of developed safe-stop scenarios. The experimental results from a set of use-case manoeuvres show a trend where the size of the position estimation errors significantly grows above an initial vehicle speed of 70 km/h. This paper contributes to develop vehicle dynamics models for the purpose of a blind safe stop

    Virtual prototyping of vehicular electric steering assistance system using co-simulations

    Get PDF
    Virtual prototyping is a practical necessity in vehicle system development. From desktop simulation to track testing, several simulation approaches, such as co-simulation and hardware-in-loop (HIL) simulation, are used. However, due to interfacing problems, the consistency of testing results may not be ensured. Correspondingly, inherent inaccuracies result from numerical coupling error and non-transparent HIL interface, which involves control tracking error, delay error, and attached hardware and noise effects. This work aims to resolve these problems and provide seamless virtual prototypes for vehicle and electric power-assisted steering (EPAS) system development.The accuracy and stability of explicit parallel co-simulation and HIL simulation are investigated. The imperfect factors propagate in the simulation tools like perturbations, yield inaccuracy, and even instability according to system dynamics. Hence, reducing perturbations (coupling problem) and improving system robustness (architecture problem) are considered.In the coupling problem, a delay compensation method relying on adaptive filters is developed for real-time simulation. A novel co-simulation coupling method on H-infinity synthesis is developed to improve accuracy for a wide frequency range and achieve low computational cost. In the architecture problem, a force(torque)-velocity coupling approach is employed. The application of a force (torque) variable to a component with considerable impedance, e.g., the steering rack (EPAS motor), yields a small loop gain as well as robust co-simulation and HIL simulation. On a given EPAS HIL system, an interface algorithm is developed for virtually shifting the impedance, thus enhancing system robustness.The theoretical findings and formulated methods are tested on generic benchmarks and implemented on a vehicle-EPAS engineering case. In addition to the acceleration of simulation speed, accuracy and robustness are also improved. Consequently, consistent testing results and extended validated ranges of virtual prototypes are obtained
    • …
    corecore