2 research outputs found

    Nested turbo codes for the costa problem

    Get PDF
    Driven by applications in data-hiding, MIMO broadcast channel coding, precoding for interference cancellation, and transmitter cooperation in wireless networks, Costa coding has lately become a very active research area. In this paper, we first offer code design guidelines in terms of source- channel coding for algebraic binning. We then address practical code design based on nested lattice codes and propose nested turbo codes using turbo-like trellis-coded quantization (TCQ) for source coding and turbo trellis-coded modulation (TTCM) for channel coding. Compared to TCQ, turbo-like TCQ offers structural similarity between the source and channel coding components, leading to more efficient nesting with TTCM and better source coding performance. Due to the difference in effective dimensionality between turbo-like TCQ and TTCM, there is a performance tradeoff between these two components when they are nested together, meaning that the performance of turbo-like TCQ worsens as the TTCM code becomes stronger and vice versa. Optimization of this performance tradeoff leads to our code design that outperforms existing TCQ/TCM and TCQ/TTCM constructions and exhibits a gap of 0.94, 1.42 and 2.65 dB to the Costa capacity at 2.0, 1.0, and 0.5 bits/sample, respectively

    Robust watermarking and its applications to communication problems

    Get PDF
    Digital watermarking has recently gained an intense interest in research and applications. An invisible and secret signal, called watermark, is added to the host data. With the help of this watermark issuer of the data can be unveiled, unauthorised users can be identified, illicit copying can be avoided, any attempt to temper with the data can be detected and many other security services can be provided. In this thesis, the relations and differences between watermarking and communication systems are elaborated. Based on these results new methods for both watermarking and communication are derived. A new blind, robust and reversible watermarking scheme based on Code Division Multiple Access (CDMA) is presented in this thesis. Using this scheme watermark is arithmetically added to spatial domain or frequency domain. Watermark is extracted by using spreading codes only. Proposed watermarking scheme is simple, computationally efficient and can be applied to any image format. A novel idea that watermark can be part of the image is presented. By using watermark, which is a part of an image, digital watermarking can be used beyond simple security tasks. A part of an image is selected and embedded in the whole image as watermark. This watermarked image is attacked (transmitted or compressed). By using the extracted watermark and attacked selected part image quality can be assessed or jpeg quantization ratio can be estimated or even image can be equalized blindly. Furthermore, CDMA based watermarking is used to authenticate radio frequency signal. Spreaded watermark is added in the form of noise to the modulated radio frequency signal. If this noise is increased, watermarked signal automatically becomes a scrambled signal. Later watermark is extracted and by using reversibility of proposed scheme watermark is removed. Once the watermarked is removed original signal is restored, hence descrambled
    corecore