15,015 research outputs found

    Robust control of systems with real parameter uncertainty and unmodelled dynamics

    Get PDF
    During this research period we have made significant progress in the four proposed areas: (1) design of robust controllers via H infinity optimization; (2) design of robust controllers via mixed H2/H infinity optimization; (3) M-delta structure and robust stability analysis for structured uncertainties; and (4) a study on controllability and observability of perturbed plant. It is well known now that the two-Riccati-equation solution to the H infinity control problem can be used to characterize all possible stabilizing optimal or suboptimal H infinity controllers if the optimal H infinity norm or gamma, an upper bound of a suboptimal H infinity norm, is given. In this research, we discovered some useful properties of these H infinity Riccati solutions. Among them, the most prominent one is that the spectral radius of the product of these two Riccati solutions is a continuous, nonincreasing, convex function of gamma in the domain of interest. Based on these properties, quadratically convergent algorithms are developed to compute the optimal H infinity norm. We also set up a detailed procedure for applying the H infinity theory to robust control systems design. The desire to design controllers with H infinity robustness but H(exp 2) performance has recently resulted in mixed H(exp 2) and H infinity control problem formulation. The mixed H(exp 2)/H infinity problem have drawn the attention of many investigators. However, solution is only available for special cases of this problem. We formulated a relatively realistic control problem with H(exp 2) performance index and H infinity robustness constraint into a more general mixed H(exp 2)/H infinity problem. No optimal solution yet is available for this more general mixed H(exp 2)/H infinity problem. Although the optimal solution for this mixed H(exp 2)/H infinity control has not yet been found, we proposed a design approach which can be used through proper choice of the available design parameters to influence both robustness and performance. For a large class of linear time-invariant systems with real parametric perturbations, the coefficient vector of the characteristic polynomial is a multilinear function of the real parameter vector. Based on this multilinear mapping relationship together with the recent developments for polytopic polynomials and parameter domain partition technique, we proposed an iterative algorithm for coupling the real structured singular value

    Study of two robust controls for an hydraulic actuator

    Get PDF
    Two robust control design methodologies are analyzed and compared in this article: the H-infinity control system design and the CRONE control system design. The aim of this article is to give practical considerations that will help a designer to choose between these two methodologies. The example of an electrohydraulic actuator is given in order to evaluate the implementation of each methodology and to compare the final performance

    Technical notes and correspondence: Stochastic robustness of linear time-invariant control systems

    Get PDF
    A simple numerical procedure for estimating the stochastic robustness of a linear time-invariant system is described. Monte Carlo evaluations of the system's eigenvalues allows the probability of instability and the related stochastic root locus to be estimated. This analysis approach treats not only Gaussian parameter uncertainties but non-Gaussian cases, including uncertain-but-bounded variation. Confidence intervals for the scalar probability of instability address computational issues inherent in Monte Carlo simulation. Trivial extensions of the procedure admit consideration of alternate discriminants; thus, the probabilities that stipulated degrees of instability will be exceeded or that closed-loop roots will leave desirable regions can also be estimated. Results are particularly amenable to graphical presentation

    Linear Control Theory with an ℋ∞ Optimality Criterion

    Get PDF
    This expository paper sets out the principal results in ℋ∞ control theory in the context of continuous-time linear systems. The focus is on the mathematical theory rather than computational methods

    Robust control of systems with real parameter uncertainty and unmodelled dynamics

    Get PDF
    Two significant contributions have been made during this research period in the research 'Robust Control of Systems with Real Parameter Uncertainty and Unmodelled Dynamics' under NASA Research Grant NAG-1-1102. They are: (1) a fast algorithm for computing the optimal H(sub infinity) norm for the four-block, the two block, or the one-block optimal H(sub infinity) optimization problem; and (2) a construction of an optimal H infinity controller without numerical difficulty. In using GD (Glover and Doyle) or DGKF (Doyle, Glover, Khargonekar, and Francis) approach to solve the standard H infinity norm which required bisection search. In this research period, we developed a very fast iterative algorithm for this computation. Our algorithm was developed based on hyperbolic interpolations which is much faster than any existing algorithm. The lower bound of the parameter, gamma, in the H infinity Riccati equation for solution existence is shown to be the square root of the supremum over all frequencies of the maximum eigenvalue of a given transfer matrix which can be computed easily. The lower band of gamma such that the H infinity Riccati equation has positive semidefinite solution can be also obtained by hyperbolic interpolation search. Another significant result in this research period is the elimination of the numerical difficulties arising in the construction of an optimal H infinity controller by directly applying the Glover and Doyle's state-space formulas. With the fast iterative algorithm for the computation of the optimal H infinity norm and the reliable construction of an optimal H infinity controller, we are ready to apply these tools in the design of robust controllers for the systems with unmodelled uncertainties. These tools will be also very useful when we consider systems with structured uncertainties
    • …
    corecore