7 research outputs found

    Wind-Tunnel Balance Characterization for Hypersonic Research Applications

    Get PDF
    Wind-tunnel research was recently conducted at the NASA Langley Research Center s 31-Inch Mach 10 Hypersonic Facility in support of the Mars Science Laboratory s aerodynamic program. Researchers were interested in understanding the interaction between the freestream flow and the reaction control system onboard the entry vehicle. A five-component balance, designed for hypersonic testing with pressurized flow-through capability, was used. In addition to the aerodynamic forces, the balance was exposed to both thermal gradients and varying internal cavity pressures. Historically, the effect of these environmental conditions on the response of the balance have not been fully characterized due to the limitations in the calibration facilities. Through statistical design of experiments, thermal and pressure effects were strategically and efficiently integrated into the calibration of the balance. As a result of this new approach, researchers were able to use the balance continuously throughout the wide range of temperatures and pressures and obtain real-time results. Although this work focused on a specific application, the methodology shown can be applied more generally to any force measurement system calibration

    Thermal and Pressure Characterization of a Wind Tunnel Force Balance Using the Single Vector System

    Get PDF
    Wind tunnel research at NASA Langley Research Center s 31-inch Mach 10 hypersonic facility utilized a 5-component force balance, which provided a pressurized flow-thru capability to the test article. The goal of the research was to determine the interaction effects between the free-stream flow and the exit flow from the reaction control system on the Mars Science Laboratory aeroshell during planetary entry. In the wind tunnel, the balance was exposed to aerodynamic forces and moments, steady-state and transient thermal gradients, and various internal balance cavity pressures. Historically, these effects on force measurement accuracy have not been fully characterized due to limitations in the calibration apparatus. A statistically designed experiment was developed to adequately characterize the behavior of the balance over the expected wind tunnel operating ranges (forces/moments, temperatures, and pressures). The experimental design was based on a Taylor-series expansion in the seven factors for the mathematical models. Model inversion was required to calculate the aerodynamic forces and moments as a function of the strain-gage readings. Details regarding transducer on-board compensation techniques, experimental design development, mathematical modeling, and wind tunnel data reduction are included in this paper

    Response Surface Splitplot Designs: A Literature Review

    Get PDF
    The fundamental principles of experiment design are factorization, replication, randomization, and local control of error. In many industrial experiments, however, departure from these principles is commonplace. Often in our experiments, complete randomization is not feasible because factor level settings are hard, impractical, or inconvenient to change, or the resources available to execute under homogeneous conditions are limited. These restrictions in randomization result in split-plot experiments. Also, we are often interested in fitting second-order models, which lead to second-order split-plot experiments. Although response surface methodology has experienced a phenomenal growth since its inception, second-order split-plot design has received only modest attention relative to other topics during the same period. Many graduate textbooks either ignore or only provide a relatively basic treatise of this subject. The peer-reviewed literature on second-order split-plot designs, especially with blocking, is scarce, limited in examples, and often provides limited or too general guidelines. This deficit of information leaves practitioners ill-prepared to face the many challenges associated with these types of designs. This article seeks to provide an overview of recent literature on response surface split-plot designs to help practitioners in dealing with these types of designs

    High-Reynolds Number Active Blowing Semi-Span Force Measurement System Development

    Get PDF
    Recent wind-tunnel tests at the NASA Langley Research Center National Transonic Facility utilized high-pressure bellows to route air to the model for evaluating aircraft circulation control. The introduction of these bellows within the Sidewall Model Support System significantly impacted the performance of the external sidewall mounted semi-span balance. As a result of this impact on the semi-span balance measurement performance, it became apparent that a new capability needed to be built into the National Transonic Facility s infrastructure to allow for performing pressure tare calibrations on the balance in order to properly characterize its performance under the influence of static bellows pressure tare loads and bellows thermal effects. The objective of this study was to design both mechanical calibration hardware and an experimental calibration design that can be employed at the facility in order to efficiently and precisely perform the necessary loadings in order to characterize the semi-span balance under the influence of multiple calibration factors (balance forces/moments and bellows pressure/temperature). Using statistical design of experiments, an experimental design was developed allowing for strategically characterizing the behavior of the semi-span balance for use in circulation control and propulsion-type flow control testing at the National Transonic Facility

    Generalized construction of trend resistent 2-level split-plot designs

    Get PDF
    Common experimental practices suggest randomizing the order in which runs are performed. However, there may be situations in which randomization might not produce the most desirable order, especially in the presence of known trends. There has been research done on systematically designing experiments to be robust against trends. However, few studies address the additional dimensions that arise in nested designs such as split-plot designs. Split-plot designs have been used for many years in agricultural applications and are sometimes preferred where there are hard-to-change factors in industrial settings. There currently is no established methodology to produce split-plot designs that are robust to potential two-dimensional trends. The objective of this work is to develop a methodology to design run orders for two-level, split-plot (2w × 2s) designs that are robust or nearly robust against a set of trends. Two methods are developed in this work. A fold-over method that uses already established principles is extended for use in split-plot designs. The second method uses an integer linear programming approach to search for an optimal design that is resistant to specific trends. A comparison between the two methods is presented and evaluated with a proposed set of metrics

    Robust split-plot designs for model misspecification

    No full text
    Many existing methods for constructing optimal split-plot designs, such as D-optimal or A-optimal designs, focus only on minimizing the variance of the parameter estimates for the fitted model. However, the true model is usually more complicated; hence, the fitted model is often misspecified. If significant effects not included in the model exist, then the estimates could be highly biased. Therefore a good split-plot design should be able to simultaneously control the variance and the bias of the estimates. In this article, I propose a new method for constructing optimal split-plot designs that are robust under model misspecification. Four examples are provided to demonstrate that my method can produce efficient split-plot designs with smaller overall aliasing. Simulation studies are performed to verify that the robust designs I construct have high power, low false discovery rate, and small mean squared error
    corecore