450 research outputs found

    Robust optimization with incremental recourse

    Full text link
    In this paper, we consider an adaptive approach to address optimization problems with uncertain cost parameters. Here, the decision maker selects an initial decision, observes the realization of the uncertain cost parameters, and then is permitted to modify the initial decision. We treat the uncertainty using the framework of robust optimization in which uncertain parameters lie within a given set. The decision maker optimizes so as to develop the best cost guarantee in terms of the worst-case analysis. The recourse decision is ``incremental"; that is, the decision maker is permitted to change the initial solution by a small fixed amount. We refer to the resulting problem as the robust incremental problem. We study robust incremental variants of several optimization problems. We show that the robust incremental counterpart of a linear program is itself a linear program if the uncertainty set is polyhedral. Hence, it is solvable in polynomial time. We establish the NP-hardness for robust incremental linear programming for the case of a discrete uncertainty set. We show that the robust incremental shortest path problem is NP-complete when costs are chosen from a polyhedral uncertainty set, even in the case that only one new arc may be added to the initial path. We also address the complexity of several special cases of the robust incremental shortest path problem and the robust incremental minimum spanning tree problem

    Strict Solution Method for Linear Programming Problem with Ellipsoidal Distributions under Fuzziness

    Get PDF
    This paper considers a linear programming problem with ellipsoidal distributions including fuzziness. Since this problem is not well-defined due to randomness and fuzziness, it is hard to solve it directly. Therefore, introducing chance constraints, fuzzy goals and possibility measures, the proposed model is transformed into the deterministic equivalent problems. Furthermore, since it is difficult to solve the main problem analytically and efficiently due to nonlinear programming, the solution method is constructed introducing an appropriate parameter and performing the equivalent transformations

    On robust network coding subgraph construction under uncertainty

    Get PDF
    We consider the problem of network coding subgraph construction in networks where there is uncertainty about link loss rates. For a given set of scenarios specified by an uncertainty set of link loss rates, we provide a robust optimization-based formulation to construct a single subgraph that would work relatively well across all scenarios. We show that this problem is coNP-hard in general for both objectives: minimizing cost of subgraph construction and maximizing throughput given a cost constraint. To solve the problem tractably, we approximate the problem by introducing path constraints, which results in polynomial time-solvable solution in terms of the problem size. The simulation results show that the robust optimization solution is better and more stable than the deterministic solution in terms of worst-case performance. From these results, we compare the tractability of robust network design problems with different uncertain network components and different problem formulations

    Algorithm Engineering in Robust Optimization

    Full text link
    Robust optimization is a young and emerging field of research having received a considerable increase of interest over the last decade. In this paper, we argue that the the algorithm engineering methodology fits very well to the field of robust optimization and yields a rewarding new perspective on both the current state of research and open research directions. To this end we go through the algorithm engineering cycle of design and analysis of concepts, development and implementation of algorithms, and theoretical and experimental evaluation. We show that many ideas of algorithm engineering have already been applied in publications on robust optimization. Most work on robust optimization is devoted to analysis of the concepts and the development of algorithms, some papers deal with the evaluation of a particular concept in case studies, and work on comparison of concepts just starts. What is still a drawback in many papers on robustness is the missing link to include the results of the experiments again in the design
    • 

    corecore