51,345 research outputs found

    Building a semantically annotated corpus of clinical texts

    Get PDF
    In this paper, we describe the construction of a semantically annotated corpus of clinical texts for use in the development and evaluation of systems for automatically extracting clinically significant information from the textual component of patient records. The paper details the sampling of textual material from a collection of 20,000 cancer patient records, the development of a semantic annotation scheme, the annotation methodology, the distribution of annotations in the final corpus, and the use of the corpus for development of an adaptive information extraction system. The resulting corpus is the most richly semantically annotated resource for clinical text processing built to date, whose value has been demonstrated through its use in developing an effective information extraction system. The detailed presentation of our corpus construction and annotation methodology will be of value to others seeking to build high-quality semantically annotated corpora in biomedical domains

    A Robust Interpretable Deep Learning Classifier for Heart Anomaly Detection Without Segmentation

    Full text link
    Traditionally, abnormal heart sound classification is framed as a three-stage process. The first stage involves segmenting the phonocardiogram to detect fundamental heart sounds; after which features are extracted and classification is performed. Some researchers in the field argue the segmentation step is an unwanted computational burden, whereas others embrace it as a prior step to feature extraction. When comparing accuracies achieved by studies that have segmented heart sounds before analysis with those who have overlooked that step, the question of whether to segment heart sounds before feature extraction is still open. In this study, we explicitly examine the importance of heart sound segmentation as a prior step for heart sound classification, and then seek to apply the obtained insights to propose a robust classifier for abnormal heart sound detection. Furthermore, recognizing the pressing need for explainable Artificial Intelligence (AI) models in the medical domain, we also unveil hidden representations learned by the classifier using model interpretation techniques. Experimental results demonstrate that the segmentation plays an essential role in abnormal heart sound classification. Our new classifier is also shown to be robust, stable and most importantly, explainable, with an accuracy of almost 100% on the widely used PhysioNet dataset

    Extracting Biomolecular Interactions Using Semantic Parsing of Biomedical Text

    Full text link
    We advance the state of the art in biomolecular interaction extraction with three contributions: (i) We show that deep, Abstract Meaning Representations (AMR) significantly improve the accuracy of a biomolecular interaction extraction system when compared to a baseline that relies solely on surface- and syntax-based features; (ii) In contrast with previous approaches that infer relations on a sentence-by-sentence basis, we expand our framework to enable consistent predictions over sets of sentences (documents); (iii) We further modify and expand a graph kernel learning framework to enable concurrent exploitation of automatically induced AMR (semantic) and dependency structure (syntactic) representations. Our experiments show that our approach yields interaction extraction systems that are more robust in environments where there is a significant mismatch between training and test conditions.Comment: Appearing in Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16

    A comparison of parsing technologies for the biomedical domain

    Get PDF
    This paper reports on a number of experiments which are designed to investigate the extent to which current nlp resources are able to syntactically and semantically analyse biomedical text. We address two tasks: parsing a real corpus with a hand-built widecoverage grammar, producing both syntactic analyses and logical forms; and automatically computing the interpretation of compound nouns where the head is a nominalisation (e.g., hospital arrival means an arrival at hospital, while patient arrival means an arrival of a patient). For the former task we demonstrate that exible and yet constrained `preprocessing ' techniques are crucial to success: these enable us to use part-of-speech tags to overcome inadequate lexical coverage, and to `package up' complex technical expressions prior to parsing so that they are blocked from creating misleading amounts of syntactic complexity. We argue that the xml-processing paradigm is ideally suited for automatically preparing the corpus for parsing. For the latter task, we compute interpretations of the compounds by exploiting surface cues and meaning paraphrases, which in turn are extracted from the parsed corpus. This provides an empirical setting in which we can compare the utility of a comparatively deep parser vs. a shallow one, exploring the trade-o between resolving attachment ambiguities on the one hand and generating errors in the parses on the other. We demonstrate that a model of the meaning of compound nominalisations is achievable with the aid of current broad-coverage parsers
    • ā€¦
    corecore