2,511 research outputs found

    Robust management of outliers in sensor network aggregate queries

    Full text link

    CleanML: A Study for Evaluating the Impact of Data Cleaning on ML Classification Tasks

    Full text link
    Data quality affects machine learning (ML) model performances, and data scientists spend considerable amount of time on data cleaning before model training. However, to date, there does not exist a rigorous study on how exactly cleaning affects ML -- ML community usually focuses on developing ML algorithms that are robust to some particular noise types of certain distributions, while database (DB) community has been mostly studying the problem of data cleaning alone without considering how data is consumed by downstream ML analytics. We propose a CleanML study that systematically investigates the impact of data cleaning on ML classification tasks. The open-source and extensible CleanML study currently includes 14 real-world datasets with real errors, five common error types, seven different ML models, and multiple cleaning algorithms for each error type (including both commonly used algorithms in practice as well as state-of-the-art solutions in academic literature). We control the randomness in ML experiments using statistical hypothesis testing, and we also control false discovery rate in our experiments using the Benjamini-Yekutieli (BY) procedure. We analyze the results in a systematic way to derive many interesting and nontrivial observations. We also put forward multiple research directions for researchers.Comment: published in ICDE 202

    Effective Use Methods for Continuous Sensor Data Streams in Manufacturing Quality Control

    Get PDF
    This work outlines an approach for managing sensor data streams of continuous numerical data in product manufacturing settings, emphasizing statistical process control, low computational and memory overhead, and saving information necessary to reduce the impact of nonconformance to quality specifications. While there is extensive literature, knowledge, and documentation about standard data sources and databases, the high volume and velocity of sensor data streams often makes traditional analysis unfeasible. To that end, an overview of data stream fundamentals is essential. An analysis of commonly used stream preprocessing and load shedding methods follows, succeeded by a discussion of aggregation procedures. Stream storage and querying systems are the next topics. Further, existing machine learning techniques for data streams are presented, with a focus on regression. Finally, the work describes a novel methodology for managing sensor data streams in which data stream management systems save and record aggregate data from small time intervals, and individual measurements from the stream that are nonconforming. The aggregates shall be continually entered into control charts and regressed on. To conserve memory, old data shall be periodically reaggregated at higher levels to reduce memory consumption

    A Survey on IT-Techniques for a Dynamic Emergency Management in Large Infrastructures

    Get PDF
    This deliverable is a survey on the IT techniques that are relevant to the three use cases of the project EMILI. It describes the state-of-the-art in four complementary IT areas: Data cleansing, supervisory control and data acquisition, wireless sensor networks and complex event processing. Even though the deliverable’s authors have tried to avoid a too technical language and have tried to explain every concept referred to, the deliverable might seem rather technical to readers so far little familiar with the techniques it describes

    The Fog Makes Sense: Enabling Social Sensing Services With Limited Internet Connectivity

    Full text link
    Social sensing services use humans as sensor carriers, sensor operators and sensors themselves in order to provide situation-awareness to applications. This promises to provide a multitude of benefits to the users, for example in the management of natural disasters or in community empowerment. However, current social sensing services depend on Internet connectivity since the services are deployed on central Cloud platforms. In many circumstances, Internet connectivity is constrained, for instance when a natural disaster causes Internet outages or when people do not have Internet access due to economical reasons. In this paper, we propose the emerging Fog Computing infrastructure to become a key-enabler of social sensing services in situations of constrained Internet connectivity. To this end, we develop a generic architecture and API of Fog-enabled social sensing services. We exemplify the usage of the proposed social sensing architecture on a number of concrete use cases from two different scenarios.Comment: Ruben Mayer, Harshit Gupta, Enrique Saurez, and Umakishore Ramachandran. 2017. The Fog Makes Sense: Enabling Social Sensing Services With Limited Internet Connectivity. In Proceedings of The 2nd International Workshop on Social Sensing, Pittsburgh, PA, USA, April 21 2017 (SocialSens'17), 6 page

    Outlier detection techniques for wireless sensor networks: A survey

    Get PDF
    In the field of wireless sensor networks, those measurements that significantly deviate from the normal pattern of sensed data are considered as outliers. The potential sources of outliers include noise and errors, events, and malicious attacks on the network. Traditional outlier detection techniques are not directly applicable to wireless sensor networks due to the nature of sensor data and specific requirements and limitations of the wireless sensor networks. This survey provides a comprehensive overview of existing outlier detection techniques specifically developed for the wireless sensor networks. Additionally, it presents a technique-based taxonomy and a comparative table to be used as a guideline to select a technique suitable for the application at hand based on characteristics such as data type, outlier type, outlier identity, and outlier degree

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Another Outlier Bites the Dust: Computing Meaningful Aggregates in Sensor Networks

    Full text link
    Abstract — Recent work has demonstrated that readings pro-vided by commodity sensor nodes are often of poor quality. In order to provide a valuable sensory infrastructure for monitoring applications, we first need to devise techniques that can withstand “dirty ” and unreliable data during query processing. In this paper we present a novel aggregation framework that detects suspicious measurements by outlier nodes and refrains from incorporating such measurements in the computed aggregate values. We consider different definitions of an outlier node, based on the notion of a user-specified minimum support, and discuss techniques for properly routing messages in the network in order to reduce the bandwidth consumption and the energy drain during the query evaluation. In our experiments using real and synthetic traces we demonstrate that: (i) a straightfor-ward evaluation of a user aggregate query leads to practically meaningless results due to the existence of outliers; (ii) our techniques can detect and eliminate spurious readings without any application specific knowledge of what constitutes normal behavior; (iii) the identification of outliers, when performed inside the network, significantly reduces bandwidth and energy drain compared to alternative methods that centrally collect and analyze all sensory data; and (iv) we can significantly reduce the cost of the aggregation process by utilizing simple statistics on outlier nodes and reorganizing accordingly the collection tree. I
    corecore