
SeTraStream: Semantic-Aware Trajectory
Construction over Streaming Movement Data

Zhixian Yan1?, Nikos Giatrakos2??, Vangelis Katsikaros2,
Nikos Pelekis??2, and Yannis Theodoridis??2

1EPFL, Switzerland
zhixian.yan@epfl.ch

2University of Piraeus, Greece
{ngiatrak, vkats, npelekis, ytheod}@unipi.gr

Abstract. Location data generated from GPS equipped moving objects
are typically collected as streams of spatiotemporal 〈x, y, t〉 points that
when put together form corresponding trajectories. Most existing studies
focus on building ad-hoc querying, analysis, as well as data mining tech-
niques on formed trajectories. As a prior step, trajectory construction
is evidently necessary for mobility data processing and understanding,
including tasks like trajectory data cleaning, compression, and segmen-
tation so as to identify semantic trajectory episodes like stops (e.g. while
sitting and standing) and moves (while jogging, walking, driving etc).
However, semantic trajectory construction methods in the current liter-
ature are typically based on offline procedures, which is not sufficient for
real life trajectory applications that rely on timely delivery of computed
trajectories to serve real-time query answers. Filling this gap, our paper
proposes a platform, namely SeTraStream, for online semantic trajectory
construction. Our framework is capable of providing real-time trajectory
data cleaning, compression, segmentation over streaming movement data.

1 Introduction

With the growth of location-based tracking technology like GPS, RFID and
GSM networks, an enormous amount of trajectory data are generated from var-
ious real life applications, including traffic management, urban planning and
geo-social networks. A lot of studies have already been established on trajecto-
ries, ranging from data management to data analysis. The focus of trajectory
data management includes building data models, query languages and imple-
mentation aspects, such as efficient indexing, query processing, and optimization
techniques [12][25]; whilst the analysis aims at trajectory data mining includ-
ing issues like classification, clustering, outlier detection, as well as trajectory
pattern discovery (e.g. sequential, periodic and convoy patterns) [9][13][20][21].

? This work was conducted during a Short Term Scientific Mission (STSM) of the
author sponsored by the COST MOVE project.

?? Nikos Giatrakos, Nikos Pelekis and Yannis Theodoridis were partially supported by
the EU FP7/ICT/FET Project MODAP.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147971775?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Zhixian Yan et al.

Recently, semantic trajectory computation has attracted the research inter-
est [1][3][29][30][31][32]. The focus of semantic trajectory construction is initially
on the extraction of meaningful trajectories from the raw positioning data like
GPS feeds. Moreover, sensory elements placed on vehicles can provide additional
lower-scale information about their movement. Semantic trajectories manage to
encompass both objects’ spatiotemporal movement characteristics (at a certain
level of abstraction) as well as useful information regarding objects’ movement
patterns (e.g dwelling, speeding, tailgating) and social activities (see Fig. 1) as-
signed to different time intervals throughout their lifespan. Current methods of
such kind of trajectory construction are mainly offline [1][3][29][30][31][32], which
is not enough for modern, real life applications, because positioning data of mov-
ing objects are continuously generated as streams and corresponding querying
operations often demand result delivery in an online and continuous fashion.

home office market home

bus metro walk

<x,y,t> streaming movement data

Fig. 1: From streaming movement data to semantic trajectory

Motivating Examples. Online semantic trajectory construction can be useful
in many traffic monitoring scenarios where authorities are interested in identify-
ing apart from recent (i.e., within a restricted time window) objects’ trajectory
representation, the behavior of the drivers by posing queries of the form: “Re-
port every τ secs the movement and driving behavior of the objects within area A
during the last T minutes”. In that, authorities are able to continuously diagnos-
ing streets where the density of vehicles whose drivers tend to have aggressive
(speeding, tailgating, driving at the edges of the lanes etc.) behavior has recently
become high, thus enabling suitable placement and periodic rearrangement of
traffic wardens and patrol cars. As another example, state-of-the-art navigation
services (http://world.waze.com/) provide the potential for combining traditional
routing functionality with social networking facilities. Online semantic trajec-
tory construction allows users to acquire a compact picture of the movement
and the social activities of interconnected friends around their moving area.

This paper proposes SeTraStream, a real-time platform that can progressively
process raw mobility data arriving within a restricted time window and compute
semantic-aware trajectories online. Before that, a number of data preparation
steps need to be considered so as to render data easy to handle and ready to
reveal profound movement patterns. The talk regards data cleaning and compres-
sion that precede the online segmentation and semantic trajectory computation
procedures. Data cleaning is dealing with trajectory errors, including systematic
errors (outlier removal) and random errors (smooth noise) [22][31]; compres-
sion considers data reduction because trajectory data grow rapidly and lack of
compression sooner or later leads to exceeding system capacity [16][23]; segmen-

SeTraStream: Semantic-Aware Trajectory Construction 3

tation is used for dividing trajectories into episodes where each episode is in some
sense homogeneous (e.g. sharing similar velocity, direction etc.) [3] and thus ex-
presses unchanged movement pattern; semantic computation can further extract
high-level trajectory concepts like stops/moves [29], and even provide additional
tagging support like the activity for stops (e.g. home, office, shopping) and the
transportation mode (e.g. metro, bus, walking) for moves [1][30][31][33].

Challenges. It is non-trivial to establish a real-time semantic trajectory compu-
tation platform. There exist new technical challenges compared to the existing
offline solutions: (1) Efficient Computation: Large amounts of movement data
are generated continuously, therefore we need to come up with more efficient
algorithms which can handle different levels of trajectories in an acceptable
time – including all data processing aspects like data cleaning, compression,
segmentation, and semantic tagging; (2) Suitable Trajectory Segmentation Deci-
sion Making: Algorithms in offline trajectory construction typically tune a lot of
thresholds placed on movement features (like acceleration, direction alteration,
stop duration etc.) to find their most suitable values, sometimes in a per object
fashion. However, in the real-time context the movement attribute distribution
may tremendously vary over time and continuous parameter tuning is prohibitive
for real-time semantic trajectory construction. Thus, suitable techniques should
not rely on many predefined thresholds on certain movement features but in-
stead consider pattern alterations during the trajectory computation process.
(3) Semantic Trajectory Tagging: After trajectory segmentation, the outcomes
should provide the potentials for semantic tags to be explored, e.g. characteriza-
tion of the activity (shopping, work) or means of movement that is taking place
in episodes (e.g. car, metro, bus in Fig. 1).

Contributions. Towards the objective of real-time semantic trajectory con-
struction, the core contributions of our paper are:

– Online Trajectory Preprocessing. As a prior step for constructing semantic
trajectories, we significantly redesign trajectory data preprocessing in the
real-time context, including online cleaning and online compression. Our
cleaning includes an one-loop procedure for removing outliers and alleviating
errors based on a Kernel smoothing method. SeTraStream’s compression
scheme uses a combination of the Synchronized Euclidean Distance (sed)
and the novel definition of a Synchronized Correlation Coefficient (scc).

– Online Trajectory Construction. We design techniques for finding division
points which infer trajectory episodes during online trajectory segmenta-
tion. SeTraStream’s segmentation outcomes are later easy to handle and a
semantic tagging classifier can then be applied for tag assignment on identi-
fied episodes, e.g. “driving”, “jogging”, “dwelling for shopping” etc.

– Implementation Platform & Evaluation. We implement SeTraStream’s multi-
layer procedure for semantic trajectory construction and evaluate it, con-
sidering different real life trajectory datasets. The results demonstrate the
ability of SeTraStream to accurately provide computed semantic-aware tra-
jectories in real-time, readily available for applications’ querying purposes.

4 Zhixian Yan et al.

The rest of the paper proceeds as follows. In the upcoming section we dis-
cuss existing related works. Section 3 describes the preliminaries for semantic
trajectory computation in SeTraStream, while in section 4 we present the data
preparation procedures regarding incoming data cleaning and compression. In
Section 5 we present SeTraStream’s online segmentation algorithms and in Sec-
tion 6 we experimentally evaluate our techniques. Eventually, section 7 includes
concluding remarks and future work considerations.

2 Related Work

Trajectory construction is the procedure of reconstructing trajectories from the
original sequence of spatiotemporal records of moving objects. Tasks involved in
this procedure mainly include data cleaning, data compression and data segmen-
tation. Data cleaning is dealing with trajectory errors which are quite common
in GPS alike trajectory recordings. There are two types of errors: the outliers
which are far away from the true values and need to be removed; the noisy data
that should be corrected and smoothed. Several works [22][28][31] design specific
filtering methods to remove outliers and smoothing methods to deal with small
random errors. Regarding network-constrained moving objects, a number of map
matching algorithms have been designed to refine the raw GPS records [2][16].

Trajectory data are generated continuously, in a high frequency and sooner
or later grow beyond systems’ computational and memory capacity. Therefore,
data compression is a fundamental task for supporting scalable applications. The
spatiotemporal compression methods for trajectory data can be classified into
four types: i.e. top-down, bottom-up, sliding window, and opening window. The
top-down algorithm recursively splits the trajectory sequence and selects the
best position in each sub-sequence. A representative top-down method is the
Douglas-Peucker (DP) algorithm [6], with many extended implementation tech-
niques. The bottom-up algorithm starts from the finest possible representation,
and merges the successive data points until some halting conditions are met. Slid-
ing window methods compress data in a fixed window size; whilst open window
methods use a dynamic and flexible window size for data segmentation. To name
but a few methods: Meratnia et al. propose Top-Down Time Ratio (TD-TR) and
OPen Window Time Ratio (OPW-TR) for the compression of spatiotemporal
trajectories [23]. In addition, the work of [26] provides two sampling based com-
pression methods: threshold-guided sampling and STTrace to deal with limited
memory capacity.

Recently, semantic-based trajectory model construction has emerged as a hot
topic for reconstructing trajectories, such as the stop-move concept in [29]. From
a semantic point of view, a raw trajectory as a sequence of GPS points can be
abstracted to a sequence of meaningful episodes (e.g. begin, move, stop, end).
Yan et al. design a computing platform to progressively generate spatiosemantic
trajectories from the raw GPS tracking feeds [31][32]. In that approach, different
levels of trajectories are constructed, from spatiotemporal trajectories, structured
trajectories to the final semantic trajectories, in four computational layers, i.e.

SeTraStream: Semantic-Aware Trajectory Construction 5

data preprocessing, trajectory identification, trajectory structure and semantic
enrichment.

Trajectory episodes like stops and moves can be computed with given ge-
ographic artifacts [1] or only depend on spatiotemporal criteria like density,
velocity, direction etc. [24][27][31]. Alvares et al. develop a mechanism for the
automatic extraction of stops that is based on the intersection of trajectories and
geometries of geographical features considered relevant to the application [1]. In
this approach the semantic information is limited to geographic data that inter-
sect the trajectories for a certain time interval. This approach is restricted to
applications in which geographic information can help to identify places visited
by the moving object which play the essential role.

Recently, more advanced methods use spatiotemporal criteria to perform tra-
jectory segmentation and identify episodes like stops/moves: Yan et al design a
velocity-based method providing a dynamic velocity threshold on stop compu-
tation, where the minimal stop duration is used to avoid false positives (e.g.
congestions) [31]; several clustering-based stop identification methods have been
developed, e.g. using the velocity [24] and direction features [27] of movement.
Finally, Buchin et al. provide a theoretical trajectory segmentation framework
and claim that the segmentation problem can be solved in O(nlogn) time [3].

Online segmentation concepts can be traced back to the time series and sig-
nal processing fields [17], but not initially for trajectories. Although, some of the
above works are capable of adapting to an online context [2][16], none of them
focuses on revealing the profound semantics present in the computed trajecto-
ries in real-time. To the best of our knowledge, online algorithms for semantic
trajectory construction are significantly missing. Our objective is to design such
online computation methods for real-time semantic trajectory construction.

3 Preliminaries

3.1 Data and Semantic Trajectory Models

In our setting, a central server continuously collects the status updates of moving
objects that move inside an area of interest – monitoring area of moving objects.
First, such updates involving an object Oi contain spatiotemporal 〈x, y, t〉 points
forming its “Raw Location Stream”.

Definition 1 (Raw Location Stream) The continuous recording of spatiotem-
poral points that update the status of a moving object Oi, i.e. 〈Q`s1 , Q`s2 , . . . , Q`sn 〉,
where Q`si = 〈x, y, t〉 is a tuple including moving object’s Oi, position 〈x, y〉 and
timestamp t.

By means of the raw location stream, we can derive information of movement
features such as acceleration, speed, direction etc., which make up a “Location
Stream Feature Vector” (Q`f). Moreover, depending on the application, updates
include additional attributes such as heading, steering wheel activity, lane po-
sition, distance to headaway vehicle (e.g to assess tailgating), displacement and

6 Zhixian Yan et al.

so on. These features formulate a “Complementary Feature Vector” (Qcf). Con-
sequently, the two types of feature vectors combined together are forming the
“Movement Feature Vector” (Q = 〈Q`f , Qcf 〉) of d dimension describing d at-
tributes of Oi movement at a specific timestamp.

Definition 2 (Movement Feature Vector) The movement attributes of ob-
ject Oi at timestamp t can be described by a d-dimensional vector that is the
concatenation of the location stream feature vector and the complementary fea-
ture vector Q = 〈Q`f , Qcf 〉.
– Location Stream Feature Vector (Q`f): The movement features of object Oi
that can be derived from the raw location stream tuple Q`s.
– Complementary Feature Vector (Qcf): The movement features that cannot be
derived from the location stream but are explicitly included in Oi’s status updates.

To provide better understanding and mobility data abstraction, in [29][31] the
concept of semantic trajectories is introduced, where the trajectory is thought of
as a sequence of meaningful episodes (e.g. stop, move, and other self-contained
and self-correlated trajectory portions).

Definition 3 (Semantic Movement) A semantic movement or trajectory con-
sists of a sequence of meaningful trajectory units, called “episodes”, i.e. Tsem =
{efirst, . . . , elast}.
– An episode (e) groups a subsequence of the location stream (a number of con-
secutive 〈x, y, t〉 points) having similar movement features.
– From a semantic data compression point of view, an episode stores the subse-
quence’s temporal duration as well as its spatial extent ei = (timefrom, timeto,
geometrybound, tag).

The geometrybound is the geometric abstraction of the episode, e.g. the
bounding box of a stop area or the shape trace of roads that the moving object
has followed. The term tag in the last part of the previous definition refers to
the semantics of the episode, i.e. characterization of the activity or means of
movement that is taking place in an episode (see Fig. 1).

3.2 Window Specifications

The window specification is a fundamental concept in streaming data process-
ing [8]. In our context, the time window size T expresses the most recent portion
of semantic trajectories the server needs to be informed about. An additional
parameter τ specifies a time interval in which client side devices, installed on
moving objects, are required to collect and report batches of their time ordered
status updates [8]. Thus, Tτ batches are included in the window. Obviously, posed
prerequisites are: 1) τ � T and 2) T mod τ = 0. As the window slides, for each
monitored object Oi, the most aged batch expires and a newly received one is
appended to it. The size of τ may vary from a few seconds to minutes depending
on the application’s sampling frequency. Small τ values enable fine-tuned episode
extend determination with the make-weight of increased processing costs, while
larger τ values reduce the processing load by increasing the granules that are
assigned to episodes.

SeTraStream: Semantic-Aware Trajectory Construction 7

3.3 SeTraStream Overview

Having presented the primitive concepts utilized by our framework, in this sub-
section we outline SeTraStream’s general function. Details will be provided in
the upcoming sections. The whole process is depicted in Fig. 2. Upon the receipt
of a batch containing the status updates including Q`s, Qcf vectors at different
timestamps in τ , a cleaning and smoothing technique is applied on it (Step 1 on
the right part of the figure). Consequently, a novel compression method (Step
2) is applied on the batch considering both Q`s, Qcf characteristics while per-
forming the load shedding. Finally, at a third step Q`f , Qcf feature vectors are
extracted, a corresponding matrix is formed and the batch is buffered until it
is processed at the SeTraStream’s segmentation stage. During the segmentation
stage (left part of Fig. 2), a previously buffered batch is dequeued and compared
with other batches’ feature matrices in Oi’s window. SeTraStream seeks both for
short and long term changes in Oi’s movement pattern, and identifies an episode
whenever feature matrices are found to be dissimilar based on the RV-Coefficient
(to be defined later) and a specified division threshold σ.

…

ON

T

O8

…

Oi

Oi …

Buffer of incoming batches
of objects (arriving every τ)

Candidate
Div PointDiv Point

O1

O2

Div Point

e1 e2
W1l

W2l

W3l

Wr

O5

BB’
1. Filter & smoothing
2. Compression
3. Extract Movement

Feature Vectors

Fig. 2: The SeTraStream Framework

4 Online Data Preparation

As already described, arriving batches involving monitored objects contain their
raw location stream, as well as complementary feature vectors. In this section,
we discuss the initial steps of data preparation before proceeding to episode de-
termination (i.e. trajectory segmentation). The talk regards three steps depicted
in the right part of Fig. 2: (1) an online cleaning step that deals with noisy tu-
ples, (2) an online compression stage that manages to reduce both the available
memory usage and the processing cost in computing trajectories, and (3) ex-
tracting movement feature vectors, including both the location stream features
and complementary features. Table 1 summarizes the symbology utilized in the
current and the upcoming sections as well.

8 Zhixian Yan et al.

Symbol Description

N Number of monitored objects

T , τ Window size and batch interval

d Number of movement features

Oi The i-th monitored object id

Bi The i-th batch from a candidate div. point

Q`s Tuple including 〈x, y, t〉 triplet of an objects’ raw location stream

Q`f Feature vector derived from the raw location stream at t

Qcf Complementary feature vector at timestamp t

δoutlier, δsmooth, σ Filtering, smoothing and segmentation thresholds respectively

res The residual between the smoothed and the true value

sed, scc Synchronous Euclidean Distance and Correlation Coefficient

W`,Wr A left and right workpiece respectively

ei The i-th episode in an object’s window

Table 1: Notations of symbols

4.1 Online Cleaning

The main focus of trajectory data cleaning is to remove GPS errors. Jun et al.
[14] summarize two types of GPS errors: systematic errors (i.e. the totally differ-
ent GPS positioning from the actual location which is caused by low number of
satellites in view, Horizontal Dilution Of Position HDOP etc.) and random er-
rors (i.e. the small errors up to ±15 meters which can be caused by the satellite
orbit, clock or receiver issues). These systematic errors are also named “out-
liers”, where researchers usually design filtering methods to remove them; whilst
random errors are small distortions from the true values and their influences can
be decreased by smoothing methods. Many offline GPS data cleaning works can
be found such as [14][28][31].

In the context of streaming data, online filtering & smoothing of stream-
ing tuples has become a hot topic [5][10][11][15][19]. Different from the focus of
prior works on data accuracy and distribution estimation, our primary concern
of cleaning streaming movement data is refining the data points that have sub-
stantial distortion of movement features for computing semantic trajectories1.

For efficient data cleaning, we need to combine online filtering and online
smoothing in a single loop. When a new batch B regarding object Oi arrives
(right part of Fig.2), we do the following cleaning steps:

1. Build a kernel based smoothing model: (x̂, ŷ) =
∑
i k(ti)(xti ,yti)∑

i k(ti)
where k(t) is

a function with the property
∫ |B|
0

k(t)dt = 1. The kernel function describes
the weight distribution, with most of the weight in the area near the point. In

our experiments, as in [28], we apply the Gaussian kernel k(ti) = e−
(ti−t)

2

2ß2 ,
where ß refers to the bandwidth of the kernel.

2. Calculate the residual between the model prediction and the true value 〈x, y〉
of the examined point Q`sp , i.e. res =

√
(x̂− x)2 + (ŷ − y)2.

1 Qcf values are not examined as the micro-sensory devices of vehicles usually possess
self-calibrating capabilities.

SeTraStream: Semantic-Aware Trajectory Construction 9

3. By using a speed limit vlimit and the speed vQ`sp−1
at the previous point Q`sp−1,

respectively compute the outlier bound (δoutlier = vlimit × (tQ`sp − tQ`sp−1
))

and the smooth bound (δsmooth = vQ`sp−1
× (tQ`sp − tQ`sp−1

)× 120%2).

4. Filter out the point if the residual is more than the outlier bound, i.e. res >
δoutlier, or replace the location of the point 〈x, y〉 with the smoothed value
〈x̂, ŷ〉 if the residual is between the outlier bound and the smooth bound, i.e.
δsmooth < res < δoutlier. Otherwise, we keep the original 〈x, y〉 of the point.

This cleaning method has taken both advantages of the distance based outlier
removal and the local-weighted kernel smoothing method with linear memory
requirements of O(|B|), where |B| is the size of a batch.

4.2 Online Compression

A primary concern when operating in a streaming setting regards the load shed-
ding with respect to incoming tuples. In the context of semantic trajectory com-
putation, this happens both for limiting the available buffer usage as well as to
reduce the processing cost [4][16][23][26]. In our approach, as both Definitions 2, 3
imply, the approximation quality of the mere spatiotemporal trajectories is not
our only concern. Semantic trajectories will be extracted based on additional
features other than those derived from spatiotemporal 〈x, y, t〉 points. On the
other hand, if we overlook the spatiotemporal trajectory approximation quality,
the portion of the movement features that rely on the pure location stream will
later be uncontrollably distorted. To cope with the previous requirements, we
propose a method and define a significance score suitable to serve our purposes.

Assume that a batch regarding object Oi is processed (step. 2 at right
part of Fig.2) and (Q`sp−1, Q

`s
p) is the last examined pair of points in it. When

a new point Q`sp+1 is inspected, we first obtain the significance of Q`sp from
a spatiotemporal viewpoint by fostering the Synchronous Euclidean Distance,

defined as [23][26]: sed(Q`sp , Q
`s
p−1, Q

`s
p+1) =

√
(xQ′`sp − xQ`sp)2 + (yQ′`sp − yQ`sp)2,

with xQ′`sp = xQ`sp−1
+ vx

Q`sp−1Q
`s
p+1
· (tQ`sp − tQ`sp−1

) and yQ′`sp = yQ`sp−1
+ vy

Q`sp−1Q
`s
p+1

·
(tQ`sp − tQ`sp−1

) while vx, vy refer to the velocity vector (please refer to [26] for

further details).

Nevertheless, sed constitutes an absolute number that lacks the ability to
quantify the particular significance of a point with respect to other spatiotem-
poral points within the current batch. In order to appropriately derive the afore-
mentioned significance quantification, in SeTraStream’s compression scheme we
normalize sed and define the relative spatiotemporal significance SigSP :

SigSP (Q`sp) =
sed(Q`sp , Q

`s
p−1, Q

`s
p+1)

maxsed
(1)

2 Here, we increase the smooth bound by 20% of the location prediction provided by
the speed of the previous point.

10 Zhixian Yan et al.

with 0 ≤ SigSP (Q`sp) ≤ 1. The denominator maxsed denotes the current max-

imum sed of points in the batch. Obviously, increased SigSP (Q`sp) estimations
represent points of higher spatiotemporal significance.

Carefully inspecting sed’s formula, we can conceive that the intuition behind
its definition is to measure the amount of distortion that can be caused by
pruning the spatiotemporal point Q`sp . That is, having omitted Q`sp we could
virtually infer the respective data point at timepoint tQ`sp using the preceding

and succeeding ones (Q`sp−1, Q
`s
p+1). And calculating Q′`sp , sed(Q`sp , Q

`s
p−1, Q

`s
p+1)

measures the incorporated distortion.
Thus, as regards the complementary feature vectors of Oi we choose to base

the measure of their significance on the Correlation Coefficient (corr) metric.
First, fostering an attitude similar to that in sed’s calculation as explained in
the previous paragraph, we estimate the value at the i-th position of vector

Q′cfp as: [Q′cfp]i = [Qcfp−1]i +
[Qcfp+1]i−[Q

cf
p−1]i

t
Q
cf
p+1

−t
Q
cf
p−1

(tQcfp − tQcfp−1
). Then, based on corr

we define the Synchronized Correlation Coefficient (scc) between (Q′cfp , Qcfp) of
complementary feature vectors:

scc(Q′cfp , Qcfp) =
E(Q′cfp Qcfp)− E(Q′cfp)E(Qcfp)√

(E((Q′cfp)2)− E2(Q′cfp))(E((Qcfp)2)− E2(Qcfp))
(2)

where E() refers to the mean and −1 ≤ scc(Q′cfp , Qcfp) ≤ 1.
The choice of scc is motivated by the fact that its stem, corr, possesses the

ability to indicate the similarity of the trends that are profound in the exam-
ined vectors rather than relying on their absolute values [5][10][11][19]. Hence, it
provides an appropriate way to identify (dis)similar patterns in the complemen-
tary vectors and can be generalized in order to detect similar patterns between
movement feature vectors in their entirety. Values of scc that are close to -1 ex-
hibit high dissimilarity between (Q′cfp , Qcfp), indicating that omitting Qcfp results
in higher pattern distortion. Calculating 1 − scc enables higher measurements
to account for more dissimilar patterns and taking one step further, min-max
normalization on 1− scc allows (dis)similarity values lie within [0, 1]. Thus, we
eventually compute the relative significance of the complementary feature vector:

SigC(Qcfp) =
1− scc(Q′cfp , Qcfp)

2max{(1− scc)}
(3)

In the context of our compression scheme, the more dissimilar (Q′cfp , Qcfp) are,
the higher the probability to be included in the window should be. As a result,
the overall significance Sig(Qp) of Qp can be estimated by the combination of
both the location stream feature SigSP (Q`sp) and the complementary feature

SigC(Qcfp). The weight balance between them is application dependent, though
we choose to treat them equally important [20]:

Sig(Qp) =
1

2
(SigSP (Q`sp) + SigC(Qcfp)) (4)

Eventually, for a threshold 0 ≤ Sigthres ≤ 1, Qp remains in the batch when
Sig(Qp) ≥ Sigthres, or it is removed for compression purposes otherwise.

SeTraStream: Semantic-Aware Trajectory Construction 11

5 Semantic Trajectory Construction

We now describe the core of SeTraStream, the online trajectory segmentation
stage. This stage comes after data cleaning and compression utilizing the ex-
tracted feature vectors of a batch (step. 3 at right part of Fig.2).

5.1 Online Episode Determination - Trajectory Segmentation

Upon deciding the data points of a batch that are to be included in the window as
devised in the previous subsection, SeTraStream proceeds by examining episode
existence in T . To start with, we assume the simple case of the current window
consisting of a couple of τ -sized batches (i.e. T = 2τ). We will henceforth refer to
each part of the window composed of a number of compressed batches as work-
piece. Intuitively, distinguishing episodes is equivalent to finding a division point,
where the movement feature vectors on its left and right sides are uncorrelated
and thus correspond to different movement patterns. In our simple scenario, a
candidate division point is placed in the middle of the available workpieces.

Hence, we subsequently need to dictate a suitable measure in order to de-
termine movement pattern change existence. We already noted the particular
utility of the correlation coefficient on the discovery of trends [5][10][11][19], and
thus (in our context) patterns in the movement data. In this processing phase
movement feature vectors composing each workpiece essentially form a pair of
matrices for which correlation computation needs to be conducted. As a result,
we will reside to the RV-coefficient which constitutes a generalization of the cor-
relation coefficient for matrix data. We organize W` into a d×m matrix, where
d is the number of movement features and m represents a number of vectors
(at different timestamps) that are the columns of the matrix. Similarly, Wr is
organized in a d × n matrix i.e. n columns exist. The RV-Coefficient between
〈W`,Wr〉 is defined as:

RV (W`,Wr) =
Tr(W`W

′
`WrW

′
r)√

Tr([W`W ′`]
2)Tr([WrW ′r]

2)
(5)

where W ′` ,W
′
r refer to the transpose matrices, Tr() denotes the trace of a ma-

trix and 0 ≤ RV ≤ 1. RV values closer to zero are indicative of uncorrelated
movement patterns. Based on a division point threshold σ workpieces W`,Wr

can be assigned to a pair of different episodes e` = (0, T − τ, geometrybound),
er = (T − τ + 1, T, geometrybound) when:

RV (W`,Wr) ≤ σ (6)

or to a single episode e = (0, T, geometrybound) otherwise.
Now, consider the general case of T covering an arbitrary number of batches.

It can easily be conceived that in a larger time window an alteration in the
movement pattern may happen: (a) instantly as a sharp change, or (b) in a
more smooth manner as time passes. As a result, upon the arrival of a new

12 Zhixian Yan et al.

workpiece Wr, we initially check for short-term changes in the patterns of move-
ment. We thus place a candidate division point between the newly received
workpiece and the last of the existing ones. Then the correlation between the
movement feature vectors present in 〈W1`,Wr〉 is computed. Notice that W1`

this time possesses an additional subscript which denotes the step of the pro-
cedure, as will be shortly explained. Similarly to our discussion in the previous
paragraphs, when RV1(W1`,Wr) is lower than the specified division threshold,
a division point exists and signals the end of the previous episode e` and starts
a new one er.

No short-term change existence triggers our algorithm to proceed by seek-
ing long-term dis-correlations. For this purpose, we first examine RV2(W2`,Wr)
doubling the time scale of the left workpiece by going 2τ units back in the win-
dow from the candidate division point. In case RV2 does not satisfy Inequality 6,
this procedure continuous by exponentially expanding the time scale of the left
workpiece in a way such that at the i-th step of the algorithm the size of Wi`

is 2(i−1)τ units and RVi(Wi`,Wr) is calculated. When Inequality 6 is satisfied
the candidate division point is a true division point which bounds the previous
episode ei = (timefrom, timeto, geometrybound) and constitutes the onset of a
new. Otherwise, Wr is rendered the current bound of the last episode by being
appended to it. If no long-term change is detected, the aforementioned expansion
ceases when either the beginning of the last episode or the start of T (in case
all previous batches have been attributed to the same episode) is reached, i.e.
no data points of the penultimate episode are considered since its extend has
already been determined.

The exponential workpiece expansion fostered here is inspired by the tilted
time window definition [8] as a general and rational way to seek movement pat-
tern changes in different time granularities. Other expansion choices can also
be applied. All of these options are orthogonal to our approaches and do not
affect the generic function of SeTraStream. Our approach manages to effec-
tively handle sliding windows as a slide of τ time units results in: (1) the ex-
piration of the initial batch of the first episode efirst of Oi which affects its
(timefrom, geometrybound) attributes and (2) the appendage of a newly received
batch that either extends the last episode elast (when no division point is de-
tected) or starts a new episode. The outcome of the online segmentation consists
of tuples TOi = {efirst, . . . , elast} representing objects’ semantic trajectories.

5.2 Time and Space Complexity

The introduced trajectory segmentation procedure, premises that a newly ap-
pended batch will be compared with left workpieces that may be (depending
on whether a division point is detected) exponentially expanded until either the
previous episode end or the start of the window is reached. Based on this ob-
servation, the lemma below elaborates on the complexity of the checks required
during candidate division point examination.

SeTraStream: Semantic-Aware Trajectory Construction 13

Lemma 1. The time complexity of SeTraStream’s online segmentation proce-
dure, for N monitored objects, under exponential Wi` expansion is O(Nlog2(Tτ))
per candidate division point.

Proof. For a single monitored object, the current window is composed of T
τ − 1

batches (excluding the one belonging to Wr). The worst case scenario appears
when no previous episode exists in the window and the candidate division point
is not proven to be an actual division point. By considering the exponential
workpiece expansion, comparisons (i.e., σ checks) may reach a number of k =

min{i ∈ N∗ :
T
τ −1

2(i−1) ≥ 1} at most. Adopting logarithms on the previous expres-
sion and summing for N objects completes the proof. �

Now, recalling the definition of the RV-Coefficient measure, it can easily be
observed that its computation relies on the multiplication of the bipartite matri-
ces with their transpose. Assume that the number of d-dimensional movement
feature vectors in a cleaned and compressed batch are n. Based on the above
observation we can see that instead of maintaining the original form of the vec-
tors which requires O(d ·n) memory space, we can reduce the space requirements
during episode determination by computing the product of the d× n matrix of
the batch with its transpose. This reduces the space requirements to O(d2) per
batch since in practice d � n. So, to check a short-term change in the move-
ment patterns we do not need to store the full matrices of W1`,Wr which in this
case are composed of one batch each, but only the matrix products as described
above.

However, this point may not be of particular utility since left workpieces are
expanded during the long-term pattern alteration checks. A natural question
that arises regards whether or not the product Wi`W

′
i` can be expressed by

means of the multiplication of single batch matrices, with their transposes.

Lemma 2. Wi`W
′
i` is the sum of batch matrix products with their transposes:

Wi`W
′
i` =

∑2(i−1)

j=1 BjB
′
j, where Bj is used to notate the matrix formed by the

vectors in the j-th batch (from a candidate division point to the end of Wi`).

Proof. Let Wi` = [B1|B2| · · · |B2(i−1)] the matrix of the (i-th) left workpiece
during the current division point check. Bjs are used to denote sub-matrices
belonging to individual batches that were appended to the workpiece. It is easy to
see that the transpose matrix can be produced by transposing these submatrices:
W ′i` = [B′1|B′2| · · · |B′2(i−1)]. And then Wi`W

′
i` can be decomposed into BjB

′
j

products: Wi`W
′
i` = B1B

′
1 +B2B

′
2 + · · ·+B2(i−1)B′2(i−1) =

∑2(i−1)

j=1 BjB
′
j �

Thus, for each batch we only need to store a square d × d matrix3, which
determines the space complexity of online segmentation leading to Lemma 3.

3 We also keep the geometry bound of the batch that is utilized in the final episode
geometry bound determination as well as some additional aggregate statistics, of
minor storage cost, for classification and tag assignment in the next step.

14 Zhixian Yan et al.

Lemma 3. During the online episode determination stage of SeTraStream, the
memory requirements per object Oi are O(d2 Tτ) and assuming N objects are

being monitored the total space utilization is O(d2N T
τ).

5.3 Episode Tagging

Having detected an episode ei, SeTraStream manages to specify in an online fash-
ion the triplet (timefrom, timeto, geometrybound) describing its spatio-temporal
extend. The final piece of information associated with an episode regards its
tag as it was described in Section 3.1. Given application’s context, possible tag
instances form a set of movement pattern classes and notice that the instances
of the classes are predetermined for the applications we consider (Section 1).
Hence, the problem of episode tag assignment can be smelted to a trivial classi-
fication task, where the classifier can be trained in advance based on the collected
episodes (with features like segment distance, duration, density, avg. speed, avg.
acceleration, avg. heading etc.) and the detected episode ei can be timely clas-
sified based on the trained model and the episode features. Suitable techniques
include decision trees, boosting, SVM, neural or Bayesian networks [7]. Addi-
tional Hidden Markov Model based trajectory annotation can be referred to [30].

6 Experiments

In this section, we present our experimental results in real-time construction of
semantic trajectories from streaming movement data.

Experimental Setup. We utilize two different datasets: Taxi Data - this dataset
includes taxi trajectory data for 5 months with more than 3M GPS records,
which do not have any complementary features. We mainly use taxi data to
validate compression. It is non-trivial to get real life on-hand dataset with both
complementary features and the underlying segment ground-truth tags. There-
fore, we collect our own trajectory data by developing Python S60 scripts de-
ployed in a Nokia N95 smartphone, which can generate both GPS data and
accelerometer data from the embedded sensors. We calculate GPS features (e.g.
transformed longitude, latitude, speed, direction) as the location stream vectors
(Q`f) and accelerometer features (e.g. mean, variance, magnitude, covariance of
the 3 accelerometer axis) as the complementary feature vectors (Qcf). We term
the latter dataset as Phone Data within which, we also provide our own real
segment tags (e.g. standing, jogging, walking) to validate the online segmenta-
tion accuracy. For Phone Data, we also work on the GPS data from the data
campaign organized by Nokia Research Center - Lausanne, which has collected
185 users’ phone data with about 7M records in total [18][30].

Data Cleaning. As described previously, our online data cleaning needs to con-
sider two types of GPS data errors, i.e. filtering outliers as systematic errors and
smoothing the random errors. The experimental cleaning results are shown in
Fig. 3: (a) sketches the original trajectory data; (b) identifies the outliers during

SeTraStream: Semantic-Aware Trajectory Construction 15

transformed longitude X (meter)

tr
an

sf
o

rm
ed

 la
ti

tu
d

e
 Y

 (
m

et
er

)

9.7605 9.761 9.7615 9.762 9.7625

x 106

2.15

2.155

2.16

2.165

2.17

2.175

2.18

2.185

2.19
x 105 (a)

original sequence

9.7605 9.761 9.7615 9.762 9.7625

x 106

2.15

2.155

2.16

2.165

2.17

2.175

2.18

2.185

2.19
x 105 (b)

original sequence
outlier

9.7605 9.761 9.7615 9.762 9.7625

x 106

2.15

2.155

2.16

2.165

2.17

2.175

2.18

2.185

2.19
x 105 (c)

original (with outlier)
smoothed sequence

9.761 9.7612 9.7614 9.7616 9.7618

x 106

2.16

2.161

2.162

2.163

2.164

2.165

2.166

2.167

2.168

2.169

x 105 (d)

original (without outlier)
smoothed sequence

Fig. 3: Data cleaning (outlier removal and smoothing)

the online cleaning process; (c) and (d) present the original movement sequences
together with the final smoothed trajectories, where (c) includes the outliers in
the original sequences, whilst (d) removes them for better visualization.

Online Compression. Technically, compression makes sense when dealing with
large data sets, however both Taxi Data and the big part of Phone Data have
no complementary features (Qcfp) available but only the GPS features (Q`sp).
Thus, our current experiment validates the sensitivity of data compression rate
with respect to the spatiotemporal significance SigSP (Q`sp) on location streams,

without considering the significance of the complementary features SigC(Qcfp).
As shown in Fig. 4, we plot the compression rate sensitivity when applying
different thresholds on SigSP (Q`sp). The results are proportional when using the
Phone Data with respective Sig(Qp) thresholds.

0.1 0.3 0.5 0.7 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

compression threshold

co
m

p
re

ss
io

n
 r

at
e

Fig. 4: Data compression rate w.r.t. different thresholds SigSP (Q`s
p)

Online Segmentation. SeTraStream’s procedure in online trajectory segmen-
tation relates to (1) initially computing the RV-coefficient between two work-

16 Zhixian Yan et al.

pieces RV (W`,Wr) and (2) expanding W` if RV (W`,Wr) is bigger than the given
threshold σ (otherwise, we identify a division point between two episodes). Re-
sults are shown in Fig. 5, where for T = 60s we can discover two main division
points (with RV-coefficient< 0.6 and batch size τ < 16), which is consistent with
the underlying ground-truth tags. The stars in the figures are the real division
points in the streaming data, which indicate when user changes their movement
behaviors e.g. from jogging to walking and finally to standing.

Fig. 5 analyzes the sensitivity of using different batch sizes, where the best
outcome (i.e accurate episode extend determination) is τ = 8s; when τ = 16s,
we actually identify three division points, which is partially correct, since as we
can see there are only two real division points in the stream. Similarly, we also
investigate the segmentation sensitivity regarding different division thresholds σ
in Fig. 6. The best segmentation result is achieved when σ = 0.6.

50 100 150 200 250 300 350 400 450
0.4

0.5

0.6

0.7

0.8

0.9

1

time (sec)

R
V

 C
o

ef
fi

ci
en

t

τ= 2s
τ= 4s
τ= 8s
τ= 16s

standingwalkingjogging

Fig. 5: Episode identification varying
batch size, for σ = 0.6

50 100 150 200 250 300 350 400 450
0.4

0.5

0.6

0.7

0.8

0.9

1

time (sec)

R
V

C
oe

ffi
ci

en
t

σ=0.2
σ=0.4
σ=0.6
σ=0.8

jogging walking standing

Fig. 6: Sensitivity of RV w.r.t. different
σ at τ = 8s

Finally, we evaluate the time performance of SeTraStream’s trajectory seg-
mentation module. We measure the segmentation latency with 25 users in the
Phone Data. In the experiments, we used a laptop with 2.2 Ghz CPU and 4 Gb
of memory. From Fig.7 and Fig. 8, we can see the segmentation time is almost
linear, in both situations with different batch sizes (τ) and different division
thresholds (σ), which is quite consistent with Lemma 1.

7 Conclusions and Future Work

In this paper, we proposed a novel and complete online framework, namely Se-
TraStream that enables semantic trajectory construction over streaming move-
ment data. As far as we know, this is the first method proposed in the literature
tackling with this problem in real-time streaming environments. Moreover, we
considered challenges occurring in real world applications including data cleaning
and load shedding procedures before accurately identifying trajectory episodes
in objects’ streaming movement data.

SeTraStream: Semantic-Aware Trajectory Construction 17

0 5 10 15 20 25
0

500

1000

1500

2000

2500

3000

#num of objects

se
g

m
en

ta
ti

o
n

 la
te

n
cy

 (
m

s)

τ= 2s
τ= 4s
τ= 8s
τ= 16s

Fig. 7: Segmentation latency with
different τ sizes (σ=0.6)

0 5 10 15 20 25
0

200

400

600

800

1000

1200

1400

1600

1800

#num of objects

se
g

m
en

ta
ti

o
n

 la
te

n
cy

 (
m

s)

σ=0.2
σ=0.4
σ=0.6
σ=0.8

Fig. 8: Segmentation latency with
different σ thresholds (τ = 8s)

Our future work is to further evaluate this method with larger datasets in-
cluding more complementary features and ground-truth tags. In addition, we are
planning to extend SeTraStream to (1) handle multiple window types for online
trajectory segmentation, and (2) perform real-time trajectory construction in
distributed settings often encountered in large scale application scenarios.

References

1. L. O. Alvares, V. Bogorny, B. Kuijpers, J. Macedo, B. Moelans, and A. Vaisman.
A Model for Enriching Trajectories with Semantic Geographical Information. In
GIS, 2007.

2. S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk. On map-matching vehicle
tracking data. In VLDB, 2005.

3. M. Buchin, A. Driemel, M. V. Kreveld, and V. Sacristan. An Algorithmic Frame-
work for Segmenting Trajectories based on Spatio-Temporal Criteria. In GIS, 2010.

4. H. Cao, O. Wolfson, and G. Trajcevski. Spatio-Temporal Data Reduction With
Deterministic Error Bounds. The VLDB Journal, 15(3), 2006.

5. A. Deligiannakis, Y. Kotidis, V. Vassalos, V. Stoumpos, and A. Delis. Another
Outlier Bites the Dust: Computing Meaningful Aggregates in Sensor Networks. In
ICDE, 2009.

6. D. Douglas and T. Peucker. Algorithms for the reduction of the number of points
required to represent a digitized line or its caricature. The Canadian Cartographer,
10(2), 1973.

7. U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors. Ad-
vances in Knowledge Discovery and Data Mining. AAAI/MIT Press, 1996.

8. C. Giannella, J. Han, J. Pei, X. Yan, and P. S. Yu. Mining Frequent Patterns in
Data Streams at Multiple Time Granularities. MIT Press, 2002.

9. F. Giannotti, M. Nanni, F. Pinelli, and D. Pedreschi. Trajectory Pattern Mining.
In KDD, 2007.

10. N. Giatrakos, Y. Kotidis, and A. Deligiannakis. PAO: Power-efficient Attribution
of Outliers in Wireless Sensor Networks. In DMSN, 2010.

11. N. Giatrakos, Y. Kotidis, A. Deligiannakis, V. Vassalos, and Y. Theodoridis.
TACO: Tunable Approximate Computation of Outliers in Wireless Sensor Net-
works. In SIGMOD, 2010.

12. R. Güting and M. Schneider. Moving Objects Databases. Morgan Kaufmann, 2005.

18 Zhixian Yan et al.

13. H. Jeung, M. L. Yiu, X. Zhou, C. S. Jensen, and H. T. Shen. Discovery of Convoys
in Trajectory Databases. In VLDB, 2008.

14. J. Jun, R. Guensler, and J. Ogle. Smoothing Methods to Minimize Impact of Global
Positioning System Random Error on Travel Distance, Speed, and Acceleration
Profile Estimates. Transportation Research Record: Journal of the Transportation
Research Board, 1972(1), jan 2006.

15. B. Kanagal and A. Deshpande. Online Filtering, Smoothing and Probabilistic
Modeling of Streaming data. In ICDE, 2008.

16. G. Kellaris, N. Pelekis, and Y. Theodoridis. Trajectory Compression under Net-
work Constraints. In SSTD, 2009.

17. E. Keogh, S. Chu, D. Hart, and M. Pazzani. An Online Algorithm for Segmenting
Time Series. In ICDM, 2001.

18. N. Kiukkoneny, J. Blom, O. Dousse, D. Gatica-Perez, and J. Laurila. Towards Rich
Mobile Phone Datasets: Lausanne Data Collection Campaign. In ICPS, 2010.

19. Y. Kotidis, V. Vassalos, A. Deligiannakis, V. Stoumpos, and A. Delis. Robust
management of outliers in sensor network aggregate queries. In MobiDE, 2007.

20. J.-G. Lee, J. Han, and K.-Y. Whang. Trajectory Clustering: a Partition-and-Group
Framework. In SIGMOD, 2007.

21. Z. Li, B. Ding, J. Han, R. Kays, and P. Nye. Mining Periodic Behaviors for Moving
Objects. In KDD, 2010.

22. G. Marketos, E. Frentzos, I. Ntoutsi, N. Pelekis, A. Raffaetà, and Y. Theodoridis.
Building real-world trajectory warehouses. In MobiDE, 2008.

23. N. Meratnia and R. A. de By. Spatiotemporal Compression Techniques for Moving
Point Objects. In EDBT, 2004.

24. A. T. Palma, V. Bogorny, B. Kuijpers, and L. O. Alvares. A Clustering-based
Approach for Discovering Interesting Places in Trajectories. In SAC, 2008.

25. N. Pelekis, E. Frentzos, N. Giatrakos, and Y. Theodoridis. HERMES: Aggregative
LBS via a Trajectory DB Engine. In SIGMOD, 2008.

26. M. Potamias, K. Patroumpas, and T. Sellis. Sampling Trajectory Streams with
Spatiotemporal Criteria. In SSDBM, 2006.

27. J. A. M. R. Rocha, V. C. Times, G. Oliveira, L. O. Alvares, and V. Bogorny.
Db-Smot: a Direction-Based Spatio-Temporal Clustering Method. In Intelligent
Systems, 2010.

28. N. Schüssler and K. W. Axhausen. Processing GPS Raw Data Without Additional
Information. Transportation Research Record: Journal of the Transportation Re-
search Board, 8, 2009.

29. S. Spaccapietra, C. Parent, M. L. Damiani, J. A. de Macedo, F. Porto, and
C. Vangenot. A Conceptual View on Trajectories. Data and Knowledge Engi-
neering, 65(1), 2008.

30. Z. Yan, D. Chakraborty, C. Parent, S. Spaccapietra, and A. Karl. SeMiTri: A
Framework for Semantic Annotation of Heterogeneous Trajectories. In EDBT,
2011.

31. Z. Yan, C. Parent, S. Spaccapietra, and D. Chakraborty. A Hybrid Model and
Computing Platform for Spatio-Semantic Trajectories. In ESWC, 2010.

32. Z. Yan, L. Spremic, D. Chakraborty, C. Parent, S. Spaccapietra, and A. Karl.
Automatic Construction and Multi-level Visualization of Semantic Trajectories.
In GIS, 2010.

33. Y. Zheng, Y. Chen, Q. Li, X. Xie, and W.-Y. Ma. Understanding transportation
modes based on GPS data for web applications. Transactions on the Web (TWEB),
4(1), 2010.

