15,958 research outputs found

    Stochastic Stability Analysis of Discrete Time System Using Lyapunov Measure

    Full text link
    In this paper, we study the stability problem of a stochastic, nonlinear, discrete-time system. We introduce a linear transfer operator-based Lyapunov measure as a new tool for stability verification of stochastic systems. Weaker set-theoretic notion of almost everywhere stochastic stability is introduced and verified, using Lyapunov measure-based stochastic stability theorems. Furthermore, connection between Lyapunov functions, a popular tool for stochastic stability verification, and Lyapunov measures is established. Using the duality property between the linear transfer Perron-Frobenius and Koopman operators, we show the Lyapunov measure and Lyapunov function used for the verification of stochastic stability are dual to each other. Set-oriented numerical methods are proposed for the finite dimensional approximation of the Perron-Frobenius operator; hence, Lyapunov measure is proposed. Stability results in finite dimensional approximation space are also presented. Finite dimensional approximation is shown to introduce further weaker notion of stability referred to as coarse stochastic stability. The results in this paper extend our earlier work on the use of Lyapunov measures for almost everywhere stability verification of deterministic dynamical systems ("Lyapunov Measure for Almost Everywhere Stability", {\it IEEE Trans. on Automatic Control}, Vol. 53, No. 1, Feb. 2008).Comment: Proceedings of American Control Conference, Chicago IL, 201

    Input-output stabilization of linear systems on Z

    Get PDF
    A formal framework is set up for the discussion of generalized autoregressive with external input models of the form Ay__Bu, where A and B are linear operators, with the main emphasis being on signal spaces consisting of bounded sequences parametrized by the integers. Different notions of stability are explored, and topological notions such as the idea of a closed system are linked with questions of stabilizability in this very general context. Various problems inherent in using Z as the time axis are analyzed in this operatorial framework

    A receding horizon generalization of pointwise min-norm controllers

    Get PDF
    Control Lyapunov functions (CLFs) are used in conjunction with receding horizon control to develop a new class of receding horizon control schemes. In the process, strong connections between the seemingly disparate approaches are revealed, leading to a unified picture that ties together the notions of pointwise min-norm, receding horizon, and optimal control. This framework is used to develop a CLF based receding horizon scheme, of which a special case provides an appropriate extension of Sontag's formula. The scheme is first presented as an idealized continuous-time receding horizon control law. The issue of implementation under discrete-time sampling is then discussed as a modification. These schemes are shown to possess a number of desirable theoretical and implementation properties. An example is provided, demonstrating their application to a nonlinear control problem. Finally, stronger connections to both optimal and pointwise min-norm control are proved
    • …
    corecore