139 research outputs found

    A Non-Local Structure Tensor Based Approach for Multicomponent Image Recovery Problems

    Full text link
    Non-Local Total Variation (NLTV) has emerged as a useful tool in variational methods for image recovery problems. In this paper, we extend the NLTV-based regularization to multicomponent images by taking advantage of the Structure Tensor (ST) resulting from the gradient of a multicomponent image. The proposed approach allows us to penalize the non-local variations, jointly for the different components, through various ℓ1,p\ell_{1,p} matrix norms with p≥1p \ge 1. To facilitate the choice of the hyper-parameters, we adopt a constrained convex optimization approach in which we minimize the data fidelity term subject to a constraint involving the ST-NLTV regularization. The resulting convex optimization problem is solved with a novel epigraphical projection method. This formulation can be efficiently implemented thanks to the flexibility offered by recent primal-dual proximal algorithms. Experiments are carried out for multispectral and hyperspectral images. The results demonstrate the interest of introducing a non-local structure tensor regularization and show that the proposed approach leads to significant improvements in terms of convergence speed over current state-of-the-art methods

    Deep-Learned Regularization and Proximal Operator for Image Compressive Sensing

    Get PDF
    Deep learning has recently been intensively studied in the context of image compressive sensing (CS) to discover and represent complicated image structures. These approaches, however, either suffer from nonflexibility for an arbitrary sampling ratio or lack an explicit deep-learned regularization term. This paper aims to solve the CS reconstruction problem by combining the deep-learned regularization term and proximal operator. We first introduce a regularization term using a carefully designed residual-regressive net, which can measure the distance between a corrupted image and a clean image set and accurately identify to which subspace the corrupted image belongs. We then address a proximal operator with a tailored dilated residual channel attention net, which enables the learned proximal operator to map the distorted image into the clean image set. We adopt an adaptive proximal selection strategy to embed the network into the loop of the CS image reconstruction algorithm. Moreover, a self-ensemble strategy is presented to improve CS recovery performance. We further utilize state evolution to analyze the effectiveness of the designed networks. Extensive experiments also demonstrate that our method can yield superior accurate reconstruction (PSNR gain over 1 dB) compared to other competing approaches while achieving the current state-of-the-art image CS reconstruction performance. The test code is available at https://github.com/zjut-gwl/CSDRCANet
    • …
    corecore