6 research outputs found

    Robust identification of switched affine systems via moments-based convex optimization

    Full text link

    Synthesis of hybrid automata with affine dynamics from time-series data

    Get PDF
    Formal design of embedded and cyber-physical systems relies on mathematical modeling. In this paper, we consider the model class of hybrid automata whose dynamics are defined by affine differential equations. Given a set of time-series data, we present an algorithmic approach to synthesize a hybrid automaton exhibiting behavior that is close to the data, up to a specified precision, and changes in synchrony with the data. A fundamental problem in our synthesis algorithm is to check membership of a time series in a hybrid automaton. Our solution integrates reachability and optimization techniques for affine dynamical systems to obtain both a sufficient and a necessary condition for membership, combined in a refinement framework. The algorithm processes one time series at a time and hence can be interrupted, provide an intermediate result, and be resumed. We report experimental results demonstrating the applicability of our synthesis approach

    Hybrid System Identification of Manual Tracking Submovements in Parkinson\u27s Disease

    Get PDF
    Seemingly smooth motions in manual tracking, (e.g., following a moving target with a joystick input) are actually sequences of submovements: short, open-loop motions that have been previously learned. In Parkinson\u27s disease, a neurodegenerative movement disorder, characterizations of motor performance can yield insight into underlying neurological mechanisms and therefore into potential treatment strategies. We focus on characterizing submovements through Hybrid System Identification, in which the dynamics of each submovement, the mode sequence and timing, and switching mechanisms are all unknown. We describe an initialization that provides a mode sequence and estimate of the dynamics of submovements, then apply hybrid optimization techniques based on embedding to solve a constrained nonlinear program. We also use the existing geometric approach for hybrid system identification to analyze our model and explain the deficits and advantages of each. These methods are applied to data gathered from subjects with Parkinson\u27s disease (on and off L-dopa medication) and from age-matched control subjects, and the results compared across groups demonstrating robust differences. Lastly, we develop a scheme to estimate the switching mechanism of the modeled hybrid system by using the principle of maximum margin separating hyperplane, which is a convex optimization problem, over the affine parameters describing the switching surface and provide a means o characterizing when too many or too few parameters are hypothesized to lie in the switching surface

    Estimating the probability of success of a simple algorithm for switched linear regression

    Get PDF
    International audienceThis paper deals with the switched linear regression problem inherent in hybrid system identification. In particular, we discuss k-LinReg, a straightforward and easy to implement algorithm in the spirit of k-means for the nonconvex optimization problem at the core of switched linear regression, and focus on the question of its accuracy on large data sets and its ability to reach global optimality. To this end, we emphasize the relationship between the sample size and the probability of obtaining a local minimum close to the global one with a random initialization. This is achieved through the estimation of a model of the behavior of this probability with respect to the problem dimensions. This model can then be used to tune the number of restarts required to obtain a global solution with high probability. Experiments show that the model can accurately predict the probability of success and that, despite its simplicity, the resulting algorithm can outperform more complicated approaches in both speed and accuracy
    corecore