11 research outputs found

    Intuitive, Interactive Beard and Hair Synthesis with Generative Models

    Full text link
    We present an interactive approach to synthesizing realistic variations in facial hair in images, ranging from subtle edits to existing hair to the addition of complex and challenging hair in images of clean-shaven subjects. To circumvent the tedious and computationally expensive tasks of modeling, rendering and compositing the 3D geometry of the target hairstyle using the traditional graphics pipeline, we employ a neural network pipeline that synthesizes realistic and detailed images of facial hair directly in the target image in under one second. The synthesis is controlled by simple and sparse guide strokes from the user defining the general structural and color properties of the target hairstyle. We qualitatively and quantitatively evaluate our chosen method compared to several alternative approaches. We show compelling interactive editing results with a prototype user interface that allows novice users to progressively refine the generated image to match their desired hairstyle, and demonstrate that our approach also allows for flexible and high-fidelity scalp hair synthesis.Comment: To be presented in the 2020 Conference on Computer Vision and Pattern Recognition (CVPR 2020, Oral Presentation). Supplementary video can be seen at: https://www.youtube.com/watch?v=v4qOtBATrv

    A study in the topology-aware reconstruction of thin tubular structures

    Get PDF
    This thesis is dedicated to the 3D reconstruction of thin tubular structures, such as cables or ropes, from a given image sequence. This is known to be a challenging task, mainly because of self-occlusions of the structure and its fine details. This new approach combines image processing tools with physics simulation to faithfully reconstruct jumbled and tangled cables in 3D. This method estimates the topology of the tubular object in the form of a single 1D path and also computes a topology-aware reconstruction of its geometry. This method is evaluated on both, synthetic and real datasets and demonstrate that this method favourably compares to state-of-the-art methods

    Single-view hair modeling using a hairstyle database

    Full text link

    Dynamic 3D Avatar Creation from Hand-held Video Input

    Get PDF
    We present a complete pipeline for creating fully rigged, personalized 3D facial avatars from hand-held video. Our system faithfully recovers facial expression dynamics of the user by adapting a blendshape template to an image sequence of recorded expressions using an optimization that integrates feature tracking, optical flow, and shape from shading. Fine-scale details such as wrinkles are captured separately in normal maps and ambient occlusion maps. From this user- and expression-specific data, we learn a regressor for on-the-fly detail synthesis during animation to enhance the perceptual realism of the avatars. Our system demonstrates that the use of appropriate reconstruction priors yields compelling face rigs even with a minimalistic acquisition system and limited user assistance. This facilitates a range of new applications in computer animation and consumer-level online communication based on personalized avatars. We present realtime application demos to validate our method

    {3D} Morphable Face Models -- Past, Present and Future

    No full text
    In this paper, we provide a detailed survey of 3D Morphable Face Models over the 20 years since they were first proposed. The challenges in building and applying these models, namely capture, modeling, image formation, and image analysis, are still active research topics, and we review the state-of-the-art in each of these areas. We also look ahead, identifying unsolved challenges, proposing directions for future research and highlighting the broad range of current and future applications

    Physics-based Reconstruction and Animation of Humans

    Get PDF
    Creating digital representations of humans is of utmost importance for applications ranging from entertainment (video games, movies) to human-computer interaction and even psychiatrical treatments. What makes building credible digital doubles difficult is the fact that the human vision system is very sensitive to perceiving the complex expressivity and potential anomalies in body structures and motion. This thesis will present several projects that tackle these problems from two different perspectives: lightweight acquisition and physics-based simulation. It starts by describing a complete pipeline that allows users to reconstruct fully rigged 3D facial avatars using video data coming from a handheld device (e.g., smartphone). The avatars use a novel two-scale representation composed of blendshapes and dynamic detail maps. They are constructed through an optimization that integrates feature tracking, optical flow, and shape from shading. Continuing along the lines of accessible acquisition systems, we discuss a framework for simultaneous tracking and modeling of articulated human bodies from RGB-D data. We show how semantic information can be extracted from the scanned body shapes. In the second half of the thesis, we will deviate from using standard linear reconstruction and animation models, and rather focus on exploiting physics-based techniques that are able to incorporate complex phenomena such as dynamics, collision response and incompressibility of the materials. The first approach we propose assumes that each 3D scan of an actor records his body in a physical steady state and uses a process called inverse physics to extract a volumetric physics-ready anatomical model of him. By using biologically-inspired growth models for the bones, muscles and fat, our method can obtain realistic anatomical reconstructions that can be later on animated using external tracking data such as the one resulting from tracking motion capture markers. This is then extended to a novel physics-based approach for facial reconstruction and animation. We propose a facial animation model which simulates biomechanical muscle contractions in a volumetric head model in order to create the facial expressions seen in the input scans. We then show how this approach allows for new avenues of dynamic artistic control, simulation of corrective facial surgery, and interaction with external forces and objects
    corecore