3,180 research outputs found

    Low Complexity Time Synchronization Algorithm for OFDM Systems with Repetitive Preambles

    Full text link
    In this paper, a new time synchronization algorithm for OFDM systems with repetitive preamble is proposed. This algorithm makes use of coarse and fine time estimation; the fine time estimation is performed using a cross-correlation similar to previous proposals in the literature, whereas the coarse time estimation is made using a new metric and an iterative search of the last sample of the repetitive preamble. A complete analysis of the new metric is included, as well as a wide performance comparison, for multipath channel and carrier frequency offset, with the main time synchronization algorithms found in the literature. Finally, the complexity of the VLSI implementation of this proposal is discussed. © 2011 Springer Science+Business Media, LLC.This work was supported by the Spanish Ministerio de Educacion y Ciencia under grants TEC2006-14204-C02-01 and TEC2008-06787.Canet Subiela, MJ.; Almenar Terre, V.; Flores Asenjo, SJ.; Valls Coquillat, J. (2012). Low Complexity Time Synchronization Algorithm for OFDM Systems with Repetitive Preambles. Journal of Signal Processing Systems. 68(3):287-301. doi:10.1007/s11265-011-0618-6S287301683IEEE 802.11a standard (1999). Wireless LAN medium access control (MAC) and physical layer (PHY) specifications: high-speed physical layer in the 5 GHz band.IEEE 802.11 g standard (2003). Wireless LAN specifications: Further higher data rate extension in the 2.4 GHz band.IEEE 802.16-2004 (2004). Standard for local and metropolitan area networks, part 16: Air interface for fixed broadband wireless access systems.Lee, D., & Cheun, K. (2002). Coarse symbol synchronization algorithms for OFDM systems in multipath channels. IEEE Communications Letters, 6(10), 446–448.Park, B., Cheon, H., Ko, E., Kang, C., & Hong, D. (2004). A blind OFDM synchronization algorithm based on cyclic correlation. IEEE Signal Processing Letters, 11(2), 83–85.Beek, J. J., Sandell, M., & Börjesson, P. O. (1997). ML estimation of time and frequency offset in OFDM system. IEEE Transactions on Signal Processing, 45(7), 1800–1805.Ma, S., Pan, X., Yang, G., & Ng, T. (2009). Blind symbol synchronization based on cyclic prefix for OFDM systems. IEEE Transactions on Vehicular Technology, 58(4), 1746–1751.Schmidl, T., & Cox, D. (1997). Robust frequency and timing synchronization for OFDM. IEEE Transactions on Communications, 45(12), 1613–1621.Coulson, A. J. (2001). Maximum likelihood synchronization for OFDM using a pilot symbol: Algorithms. IEEE Journal on Selected Areas in Communications, 19(12), 2495–2503.Tufvesson, F., Edfors, O., & Faulker, M. (1999). Time and frequency synchronization for OFDM using PN-sequence preambles. Proceedings of the Vehicular Technology Conference (VTC), 4, 2203–2207.Shi, K., & Serpedin, E. (2004). Coarse frame and carrier synchronization of OFDM systems: a new metric and comparison. IEEE Transactions on Wireless Communications, 3(4), 1271–1284.Minn, H., Zeng, M., & Bhargava, V. K. (2000). On timing offset estimation for OFDM Systems. IEEE Communications Letters, 4, 242–244.Minn, H., Bhargava, V. K., & Letaief, K. B. (2003). A robust timing and frequency synchronization for OFDM systems. IEEE Transactions on Wireless Communications, 2(4), 822–839.Minn, H., Bhargava, V. K., & Letaief, K. B. (2006). A combined timing and frequency synchronization and channel estimation for OFDM. IEEE Transactions on Communications, 54(3), 416–422.Park, B., Cheon, H., Ko, E., Kang, C., & Hong, D. (2003). A novel timing estimation method for OFDM systems. IEEE Communications Letters, 7(5), 239–241.Chang, S., & Kelley, B. (2003). Time synchronization for OFDM-based WLAN systems. Electronics Letters, 39(13), 1024–1026.Wu, Y., Yip, K., Ng, T., & Serpedin, E. (2005). Maximum-likelihood symbol synchronization for IEEE 802.11a WLANs in unknown frequency-selective fading channels. IEEE Transactions on Wireless Communications, 4(6), 2751–2763.Larsson, E. G., Liu, G., Li, J., & Giannakis, G. B. (2001). Joint symbol timing and channel estimation for OFDM based WLANs. IEEE Communications Letters, 5(8), 325–327.Troya, A., Maharatna, K., Krstic, M., Grass, E., Jagdhold, U., & Kraemer, R. (2007). Efficient inner receiver design for OFDM-based WLAN systems: algorithm and architecture. IEEE Transactions on Wireless Communications, 6(4), 1374–1385.Yang, J., & Cheun, K. (2006). Improved symbol timing synchronization in IEEE 802.11a/g wireless LAN systems in multipath channels. International Conference on Consumer Electronics. doi: 10.1109/ICCE.2006.1598425 .Manusani, S. K., Hshetrimayum, R. S., & Bhattacharjee, R. (2006). Robust time and frequency synchronization in OFDM based 802.11a WLAN systems. Annual India Conference. doi: 10.1109/INDCON.2006.302775 .Zhou, L., & Saito, M. (2004). A new symbol timing synchronization for OFDM based WLANs under multipath fading channels. 15th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications. doi: 10.1109/PIMRC.2004.1373890 .Kim, T., & Park, S.-C. (2007). A new symbol timing and frequency synchronization design for OFDM-based WLAN systems. 9th Conference on Advanced Communication Technology. doi: 10.1109/ICACT.2007.358691 .Baek, J. H., Kim, S. D., & Sunwoo, M. H. (2008). SPOCS: Application specific signal processor for OFDM communication systems. Journal of Signal Processing Systems, 53(3), 383–397.Van Kempen, G., & van Vliet, L. (2000). Mean and variance of ratio estimators used in fluorescence ratio imaging. Cytometry, 39(4), 300–305.J. Melbo, J., & Schramm, P. (1998). Channel models for HIPERLAN/2 in different indoor scenarios. 3ERI085B, HIPERLAN/2 ETSI/BRAN contribution.Abramowitz, M., & Stegun, I. A. (1972). Handbook of mathematical functions. Dover.López-Martínez, F. J., del Castillo-Sánchez, E., Entrambasaguas, J. T., & Martos-Naya, E. (2010). Iterative-gradient based complex divider FPGA core with dynamic configurability of accuracy and throughput. Journal of Signal Processing Systems. doi: 10.1007/s11265-010-0464-y .Angarita, F., Canet, M. J., Sansaloni, T., Perez-Pascual, A., & Valls, J. (2008). Efficient mapping of CORDIC Algorithm for OFDM-based WLAN. Journal of Signal Processing Systems, 52(2), 181–191

    A robust timing and frequency synchronization for OFDM systems

    Get PDF
    Abstract—A robust symbol-timing and carrier-frequency synchronization scheme applicable to orthogonal frequency-division-multiplexing systems is presented. The proposed method is based on a training symbol specifically designed to have a steep rolloff timing metric. The proposed timing metric also provides a robust sync detection capability. Both time domain training and frequency domain (FD) training are investigated. For FD training, maintaining a low peak-to-average power ratio of the training symbol was taken into consideration. The channel estimation scheme based on the designed training symbol was also incorporated in the system in order to give both fine-timing and frequency-offset estimates. For fine frequency estimation, two approaches are presented. The first one is based on the suppression of the interference introduced in the frequency estimation process by the training symbol pattern in the context of multipath dispersive channels. The second one is based on the maximum likelihood principle and does not suffer from any interference. A new performance measure is introduced for timing estimation, which is based on the plot of signal to timing-error-induced average interference power ratio against the timing estimate shift. A simple approach for finding the optimal setting of the timing estimator is presented. Finally, the sync detection, timing estimation, frequency estimation, and bit-error-rate performance of the proposed method are presented in a multipath Rayleigh fading channel. Index Terms—Frequency-offset estimation, orthogonal frequency-division multiplexing (OFDM), symbol-timing estimation, synchronization, training symbol. I

    An Efficient Data-aided Synchronization in L-DACS1 for Aeronautical Communications

    Full text link
    L-band Digital Aeronautical Communication System type-1 (L-DACS1) is an emerging standard that aims at enhancing air traffic management (ATM) by transitioning the traditional analog aeronautical communication systems to the superior and highly efficient digital domain. L-DACS1 employs modern and efficient orthogonal frequency division multiplexing (OFDM) modulation technique to achieve more efficient and higher data rate in comparison to the existing aeronautical communication systems. However, the performance of OFDM systems is very sensitive to synchronization errors. L-DACS1 transmission is in the L-band aeronautical channels that suffer from large interference and large Doppler shifts, which makes the synchronization for L-DACS more challenging. This paper proposes a novel computationally efficient synchronization method for L-DACS1 systems that offers robust performance. Through simulation, the proposed method is shown to provide accurate symbol timing offset (STO) estimation as well as fractional carrier frequency offset (CFO) estimation in a range of aeronautical channels. In particular, it can yield excellent synchronization performance in the face of a large carrier frequency offset.Comment: In the proceeding of International Conference on Data Mining, Communications and Information Technology (DMCIT

    Robust frequency and timing synchronization for OFDM

    Full text link

    Synchronization algorithms and architectures for wireless OFDM systems

    Get PDF
    Orthogonal frequency division multiplexing (OFDM) is a multicarrier modulation technique that has become a viable method for wireless communication systems due to the high spectral efficiency, immunity to multipath distortion, and being flexible to integrate with other techniques. However, the high-peak-to-average power ratio and sensitivity to synchronization errors are the major drawbacks for OFDM systems. The algorithms and architectures for symbol timing and frequency synchronization have been addressed in this thesis because of their critical requirements in the development and implementation of wireless OFDM systems. For the frequency synchronization, two efficient carrier frequency offset (CFO) estimation methods based on the power and phase difference measurements between the subcarriers in consecutive OFDM symbols have been presented and the power difference measurement technique is mapped onto reconfigurable hardware architecture. The performance of the considered CFO estimators is investigated in the presence of timing uncertainty conditions. The power difference measurements approach is further investigated for timing synchronization in OFDM systems with constant modulus constellation. A new symbol timing estimator has been proposed by measuring the power difference either between adjacent subcarriers or the same subcarrier in consecutive OFDM symbols. The proposed timing metric has been realized in feedforward and feedback configurations, and different implementation strategies have been considered to enhance the performance and reduce the complexity. Recently, multiple-input multiple-output (MIMO) wireless communication systems have received considerable attention. Therefore, the proposed algorithms have also been extended for timing recovery and frequency synchronization in MIMO-OFDM systems. Unlike other techniques, the proposed timing and frequency synchronization architectures are totally blind in the sense that they do not require any information about the transmitted data, the channel state or the signal-to-noise-ratio (SNR). The proposed frequency synchronization architecture has low complexity because it can be implemented efficiently using the three points parameter estimation approach. The simulation results confirmed that the proposed algorithms provide accurate estimates for the synchronization parameters using a short observation window. In addition, the proposed synchronization techniques have demonstrated robust performance over frequency selective fading channels that significantly outperform other well-established methods which will in turn benefit the overall OFDM system performance. Furthermore, an architectural exploration for mapping the proposed frequency synchronization algorithm, in particular the CFO estimation based on the power difference measurements, on reconfigurable computing architecture has been investigated. The proposed reconfigurable parallel and multiplexed-stream architectures with different implementation alternatives have been simulated, verified and compared for field programmable gate array (FPGA) implementation using the Xilinx’s DSP design flow.EThOS - Electronic Theses Online ServiceMinistry of Higher Education and Scientific Research (MOHSR) of IraqGBUnited Kingdo

    Robust Timing Synchronization for AC-OFDM Based Optical Wireless Communications

    Full text link
    Visible light communications (VLC) have recently attracted a growing interest and can be a potential solution to realize indoor wireless communication with high bandwidth capacity for RF-restricted environments such as airplanes and hospitals. Optical based orthogonal frequency division multiplexing (OFDM) systems have been proposed in the literature to combat multipath distortion and intersymbol interference (ISI) caused by multipath signal propagation. In this paper, we present a robust timing synchronization scheme suitable for asymmetrically clipped (AC) OFDM based optical intensity modulated direct detection (IM/DD) wireless systems. Our proposed method works perfectly for ACO-OFDM, Pulse amplitude modulated discrete multitone (PAM-DMT) and discrete Hartley transform (DHT) based optical OFDM systems. In contrast to existing OFDM timing synchronization methods which are either not suitable for AC OFDM techniques due to unipolar nature of output signal or perform poorly, our proposed method is suitable for AC OFDM schemes and outperforms all other available techniques. Both numerical and experimental results confirm the accuracy of the proposed method. Our technique is also computationally efficient as it requires very few computations as compared to conventional methods in order to achieve good accuracy.Comment: Accepted for publication in IEEE ICNS 2015, 10 Pages, 7 fig
    • …
    corecore