4,970 research outputs found

    Improving Texture Categorization with Biologically Inspired Filtering

    Full text link
    Within the domain of texture classification, a lot of effort has been spent on local descriptors, leading to many powerful algorithms. However, preprocessing techniques have received much less attention despite their important potential for improving the overall classification performance. We address this question by proposing a novel, simple, yet very powerful biologically-inspired filtering (BF) which simulates the performance of human retina. In the proposed approach, given a texture image, after applying a DoG filter to detect the "edges", we first split the filtered image into two "maps" alongside the sides of its edges. The feature extraction step is then carried out on the two "maps" instead of the input image. Our algorithm has several advantages such as simplicity, robustness to illumination and noise, and discriminative power. Experimental results on three large texture databases show that with an extremely low computational cost, the proposed method improves significantly the performance of many texture classification systems, notably in noisy environments. The source codes of the proposed algorithm can be downloaded from https://sites.google.com/site/nsonvu/code.Comment: 11 page

    MoWLD: a robust motion image descriptor for violence detection

    Full text link
    © 2015, Springer Science+Business Media New York. Automatic violence detection from video is a hot topic for many video surveillance applications. However, there has been little success in designing an algorithm that can detect violence in surveillance videos with high performance. Existing methods typically apply the Bag-of-Words (BoW) model on local spatiotemporal descriptors. However, traditional spatiotemporal features are not discriminative enough, and also the BoW model roughly assigns each feature vector to only one visual word and therefore ignores the spatial relationships among the features. To tackle these problems, in this paper we propose a novel Motion Weber Local Descriptor (MoWLD) in the spirit of the well-known WLD and make it a powerful and robust descriptor for motion images. We extend the WLD spatial descriptions by adding a temporal component to the appearance descriptor, which implicitly captures local motion information as well as low-level image appear information. To eliminate redundant and irrelevant features, the non-parametric Kernel Density Estimation (KDE) is employed on the MoWLD descriptor. In order to obtain more discriminative features, we adopt the sparse coding and max pooling scheme to further process the selected MoWLDs. Experimental results on three benchmark datasets have demonstrated the superiority of the proposed approach over the state-of-the-arts

    Discriminative Dictionary Learning with Motion Weber Local Descriptor for Violence Detection

    Full text link
    © 1991-2012 IEEE. Automatic violence detection from video is a hot topic for many video surveillance applications. However, there has been little success in developing an algorithm that can detect violence in surveillance videos with high performance. In this paper, following our recently proposed idea of motion Weber local descriptor (WLD), we make two major improvements and propose a more effective and efficient algorithm for detecting violence from motion images. First, we propose an improved WLD (IWLD) to better depict low-level image appearance information, and then extend the spatial descriptor IWLD by adding a temporal component to capture local motion information and hence form the motion IWLD. Second, we propose a modified sparse-representation-based classification model to both control the reconstruction error of coding coefficients and minimize the classification error. Based on the proposed sparse model, a class-specific dictionary containing dictionary atoms corresponding to the class labels is learned using class labels of training samples. With this learned dictionary, not only the representation residual but also the representation coefficients become discriminative. A classification scheme integrating the modified sparse model is developed to exploit such discriminative information. The experimental results on three benchmark data sets have demonstrated the superior performance of the proposed approach over the state of the arts
    • …
    corecore