2,017 research outputs found

    Array signal processing for maximum likelihood direction-of-arrival estimation

    Get PDF
    Emitter Direction-of-Arrival (DOA) estimation is a fundamental problem in a variety of applications including radar, sonar, and wireless communications. The research has received considerable attention in literature and numerous methods have been proposed. Maximum Likelihood (ML) is a nearly optimal technique producing superior estimates compared to other methods especially in unfavourable conditions, and thus is of significant practical interest. This paper discusses in details the techniques for ML DOA estimation in either white Gaussian noise or unknown noise environment. Their performances are analysed and compared, and evaluated against the theoretical lower bounds

    Space Time MUSIC: Consistent Signal Subspace Estimation for Wide-band Sensor Arrays

    Full text link
    Wide-band Direction of Arrival (DOA) estimation with sensor arrays is an essential task in sonar, radar, acoustics, biomedical and multimedia applications. Many state of the art wide-band DOA estimators coherently process frequency binned array outputs by approximate Maximum Likelihood, Weighted Subspace Fitting or focusing techniques. This paper shows that bin signals obtained by filter-bank approaches do not obey the finite rank narrow-band array model, because spectral leakage and the change of the array response with frequency within the bin create \emph{ghost sources} dependent on the particular realization of the source process. Therefore, existing DOA estimators based on binning cannot claim consistency even with the perfect knowledge of the array response. In this work, a more realistic array model with a finite length of the sensor impulse responses is assumed, which still has finite rank under a space-time formulation. It is shown that signal subspaces at arbitrary frequencies can be consistently recovered under mild conditions by applying MUSIC-type (ST-MUSIC) estimators to the dominant eigenvectors of the wide-band space-time sensor cross-correlation matrix. A novel Maximum Likelihood based ST-MUSIC subspace estimate is developed in order to recover consistency. The number of sources active at each frequency are estimated by Information Theoretic Criteria. The sample ST-MUSIC subspaces can be fed to any subspace fitting DOA estimator at single or multiple frequencies. Simulations confirm that the new technique clearly outperforms binning approaches at sufficiently high signal to noise ratio, when model mismatches exceed the noise floor.Comment: 15 pages, 10 figures. Accepted in a revised form by the IEEE Trans. on Signal Processing on 12 February 1918. @IEEE201

    Robust beamforming for interference rejection in mobile communications

    Get PDF
    The problem of robust beamformer design in the presence of moving sources is considered. A new technique based on a generalization of the constrained minimum variance beamformer is proposed. The method explicitly takes into account changes in the scenario due to the movement of the desired and interfering sources, requiring only estimation of the desired DOA. Computer simulations show that the resulting performance constitutes a compromise between interference and noise rejection, computational complexity, and sensitivity to source movement.Peer ReviewedPostprint (published version
    • …
    corecore