10,984 research outputs found

    Decentralised reliable guaranteed cost control of uncertain systems: an LMI design

    Get PDF
    © 2007 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The problem of designing a decentralised control scheme for a class of linear large scale interconnected systems with norm-bounded time-varying parameter uncertainties under a class of control failures is addressed. These failures are described by a model that considers possible outages or partial failures in every single actuator of each decentralised controller. The control design is performed through two steps. First, a decentralised reliable guaranteed cost control set is derived and, second, a feasible linear matrix inequalities procedure is presented for the effective construction of the control set. A numerical example illustrates the efficiency of the proposed control schemePeer ReviewedPostprint (published version

    Cooperative H-infinity Estimation for Large-Scale Interconnected Linear Systems

    Full text link
    In this paper, a synthesis method for distributed estimation is presented, which is suitable for dealing with large-scale interconnected linear systems with disturbance. The main feature of the proposed method is that local estimators only estimate a reduced set of state variables and their complexity does not increase with the size of the system. Nevertheless, the local estimators are able to deal with lack of local detectability. Moreover, the estimators guarantee H-infinity-performance of the estimates with respect to model and measurement disturbances.Comment: Short version published in Proc. American Control Conference (ACC), pp.2119-2124. Chicago, IL, 201

    Decentralized Implementation of Centralized Controllers for Interconnected Systems

    Get PDF
    Given a centralized controller associated with a linear time-invariant interconnected system, this paper is concerned with designing a parameterized decentralized controller such that the state and input of the system under the obtained decentralized controller can become arbitrarily close to those of the system under the given centralized controller, by tuning the controller's parameters. To this end, a two-level decentralized controller is designed, where the upper level captures the dynamics of the centralized closed-loop system, and the lower level is an observed-based sub-controller designed based on the new notion of structural initial value observability. The proposed method can decentralize every generic centralized controller, provided the interconnected system satisfies very mild conditions. The efficacy of this work is elucidated by some numerical examples

    Guaranteed Cost Tracking for Uncertain Coupled Multi-agent Systems Using Consensus over a Directed Graph

    Full text link
    This paper considers the leader-follower control problem for a linear multi-agent system with directed communication topology and linear nonidentical uncertain coupling subject to integral quadratic constraints (IQCs). A consensus-type control protocol is proposed based on each agent's states relative to its neighbors and leader's state relative to agents which observe the leader. A sufficient condition is obtained by overbounding the cost function. Based on this sufficient condition, a computational algorithm is introduced to minimize the proposed guaranteed bound on tracking performance, which yields a suboptimal bound on the system consensus control and tracking performance. The effectiveness of the proposed method is demonstrated using a simulation example.Comment: Accepted for presentation at the 2013 Australian Control conferenc

    A design procedure for overlapped guaranteed cost controllers

    Get PDF
    © 2008 the authors. This work has been accepted to IFAC for publication under a Creative Commons Licence CC-BY-NC-NDIn this paper a quadratic guaranteed cost control problem for a class of linear continuous-time state-delay systems with norm-bounded uncertainties is considered. We will suppose that the systems are composed by two overlapped subsystems but the results can be easily extended to any number of subsystems. The main objective is to design overlapping guaranteed cost controllers with tridiagonal gain matrices for these kind of systems by using a linear matrix inequality (LMI) approach. With this idea in mind, we present a design strategy to reduce the computational burden and to increase the feasibility in the LMI problem. In this context, the use of so-called complementary matrices play an important role. A simple example to illustrate the advantages achieved by using the proposed method is supplied.Peer ReviewedPostprint (published version
    corecore