97,440 research outputs found

    Adaptive Federated Minimax Optimization with Lower complexities

    Full text link
    Federated learning is a popular distributed and privacy-preserving machine learning paradigm. Meanwhile, minimax optimization, as an effective hierarchical optimization, is widely applied in machine learning. Recently, some federated optimization methods have been proposed to solve the distributed minimax problems. However, these federated minimax methods still suffer from high gradient and communication complexities. Meanwhile, few algorithm focuses on using adaptive learning rate to accelerate algorithms. To fill this gap, in the paper, we study a class of nonconvex minimax optimization, and propose an efficient adaptive federated minimax optimization algorithm (i.e., AdaFGDA) to solve these distributed minimax problems. Specifically, our AdaFGDA builds on the momentum-based variance reduced and local-SGD techniques, and it can flexibly incorporate various adaptive learning rates by using the unified adaptive matrix. Theoretically, we provide a solid convergence analysis framework for our AdaFGDA algorithm under non-i.i.d. setting. Moreover, we prove our algorithms obtain lower gradient (i.e., stochastic first-order oracle, SFO) complexity of O~(ϵ−3)\tilde{O}(\epsilon^{-3}) with lower communication complexity of O~(ϵ−2)\tilde{O}(\epsilon^{-2}) in finding ϵ\epsilon-stationary point of the nonconvex minimax problems. Experimentally, we conduct some experiments on the deep AUC maximization and robust neural network training tasks to verify efficiency of our algorithms.Comment: Submitted to AISTATS-202

    Resilient Distributed Optimization Algorithms for Resource Allocation

    Get PDF
    Distributed algorithms provide flexibility over centralized algorithms for resource allocation problems, e.g., cyber-physical systems. However, the distributed nature of these algorithms often makes the systems susceptible to man-in-the-middle attacks, especially when messages are transmitted between price-taking agents and a central coordinator. We propose a resilient strategy for distributed algorithms under the framework of primal-dual distributed optimization. We formulate a robust optimization model that accounts for Byzantine attacks on the communication channels between agents and coordinator. We propose a resilient primal-dual algorithm using state-of-the-art robust statistics methods. The proposed algorithm is shown to converge to a neighborhood of the robust optimization model, where the neighborhood's radius is proportional to the fraction of attacked channels.Comment: 15 pages, 1 figure, accepted to CDC 201
    • …
    corecore