9 research outputs found

    Few-shot Classifier GAN

    Get PDF
    Fine-grained image classification with a few-shot classifier is a highly challenging open problem at the core of a numerous data labeling applications. In this paper, we present Few-shot Classifier Generative Adversarial Network as an approach for few-shot classification. We address the problem of few-shot classification by designing a GAN in which the discriminator and the generator compete to output labeled data in any case. In contrast to previous methods, our techniques generate then classify images into multiple fake or real classes. A key innovation of our adversarial approach is to allow fine-grained classification using multiple fake classes with semi-supervised deep learning. A major strength of our techniques lies in its label-agnostic characteristic, in the sense that the system handles both labeled and unlabeled data during training. We validate quantitatively our few-shot classifier on the MNIST and SVHN datasets by varying the ratio of labeled data over unlabeled data in the training set. Our quantitative analysis demonstrates that our techniques produce better classification performance when using multiple fake classes and larger amount of unlabelled data

    Learning from small and imbalanced dataset of images using generative adversarial neural networks.

    Get PDF
    The performance of deep learning models is unmatched by any other approach in supervised computer vision tasks such as image classification. However, training these models requires a lot of labeled data, which are not always available. Labelling a massive dataset is largely a manual and very demanding process. Thus, this problem has led to the development of techniques that bypass the need for labelling at scale. Despite this, existing techniques such as transfer learning, data augmentation and semi-supervised learning have not lived up to expectations. Some of these techniques do not account for other classification challenges, such as a class-imbalance problem. Thus, these techniques mostly underperform when compared with fully supervised approaches. In this thesis, we propose new methods to train a deep model on image classification with a limited number of labeled examples. This was achieved by extending state-of-the-art generative adversarial networks with multiple fake classes and network switchers. These new features enabled us to train a classifier using large unlabeled data, while generating class specific samples. The proposed model is label agnostic and is suitable for different classification scenarios, ranging from weakly supervised to fully supervised settings. This was used to address classification challenges with limited labeled data and a class-imbalance problem. Extensive experiments were carried out on different benchmark datasets. Firstly, the proposed approach was used to train a classification model and our findings indicated that the proposed approach achieved better classification accuracies, especially when the number of labeled samples is small. Secondly, the proposed approach was able to generate high-quality samples from class-imbalance datasets. The samples' quality is evident in improved classification performances when generated samples were used in neutralising class-imbalance. The results are thoroughly analyzed and, overall, our method showed superior performances over popular resampling technique and the AC-GAN model. Finally, we successfully applied the proposed approach as a new augmentation technique to two challenging real-world problems: face with attributes and legacy engineering drawings. The results obtained demonstrate that the proposed approach is effective even in extreme cases

    GEOBIA 2016 : Solutions and Synergies., 14-16 September 2016, University of Twente Faculty of Geo-Information and Earth Observation (ITC): open access e-book

    Get PDF
    corecore