24,998 research outputs found

    Best-case performance of quantum annealers on native spin-glass benchmarks: How chaos can affect success probabilities

    Get PDF
    Recent tests performed on the D-Wave Two quantum annealer have revealed no clear evidence of speedup over conventional silicon-based technologies. Here, we present results from classical parallel-tempering Monte Carlo simulations combined with isoenergetic cluster moves of the archetypal benchmark problem-an Ising spin glass-on the native chip topology. Using realistic uncorrelated noise models for the D-Wave Two quantum annealer, we study the best-case resilience, i.e., the probability that the ground-state configuration is not affected by random fields and random-bond fluctuations found on the chip. We thus compute classical upper-bound success probabilities for different types of disorder used in the benchmarks and predict that an increase in the number of qubits will require either error correction schemes or a drastic reduction of the intrinsic noise found in these devices. We outline strategies to develop robust, as well as hard benchmarks for quantum annealing devices, as well as any other computing paradigm affected by noise.Comment: 8 pages, 5 figure

    Thermodynamic Theory of Weakly Excited Granular Materials

    Full text link
    We present a thermodynamic theory of weakly excited two-dimensional granular systems from the view point of elementary excitations of spinless Fermion systems. We introduce a global temperature T that is associated with the acceleration amplitude \Gamma in a vibrating bed. We show that the configurational statistics of weakly excited granular materials in a vibrating bed obey the Fermi statistics.Comment: 12 pages, 1 figure, To Appear in Phys. Rev. Lett. April, 199

    Resource Letter TF-1: Turbulence in Fluids

    Full text link
    This Resource Letter provides a guide to the literature on fully developed turbulence in fluids. It is restricted to mechanically driven turbulence in an incompressible fluid described by the Navier-Stokes equations of hydrodynamics, and places greatest emphasis on fundamental physical questions. Journal articles and books are cited for the following topics: The Navier-Stokes equations, qualitative aspects of turbulence, the 1941 Kolmogorov theory, intermittency and small scale structure, time correlations and pressure; with brief mention of two-dimensional turbulence, passive scalars in turbulence, and the turbulent boundary layer,Comment: 38 pages LaTeX, no figures. To appear in American Journal of Physic

    Soliton crystals in Kerr resonators

    Full text link
    Strongly interacting solitons confined to an optical resonator would offer unique capabilities for experiments in communication, computation, and sensing with light. Here we report on the discovery of soliton crystals in monolithic Kerr microresonators-spontaneously and collectively ordered ensembles of co-propagating solitons whose interactions discretize their allowed temporal separations. We unambiguously identify and characterize soliton crystals through analysis of their 'fingerprint' optical spectra, which arise from spectral interference between the solitons. We identify a rich space of soliton crystals exhibiting crystallographic defects, and time-domain measurements directly confirm our inference of their crystal structure. The crystallization we observe is explained by long-range soliton interactions mediated by resonator mode degeneracies, and we probe the qualitative difference between soliton crystals and a soliton liquid that forms in the absence of these interactions. Our work explores the rich physics of monolithic Kerr resonators in a new regime of dense soliton occupation and offers a way to greatly increase the efficiency of Kerr combs; further, the extreme degeneracy of the configuration space of soliton crystals suggests an implementation for a robust on-chip optical buffer

    Chimera states: Coexistence of coherence and incoherence in networks of coupled oscillators

    Full text link
    A chimera state is a spatio-temporal pattern in a network of identical coupled oscillators in which synchronous and asynchronous oscillation coexist. This state of broken symmetry, which usually coexists with a stable spatially symmetric state, has intrigued the nonlinear dynamics community since its discovery in the early 2000s. Recent experiments have led to increasing interest in the origin and dynamics of these states. Here we review the history of research on chimera states and highlight major advances in understanding their behaviour.Comment: 26 pages, 3 figure

    Bichromatically driven double well: parametric perspective of the strong-field control landscape reveals the influence of chaotic states

    Full text link
    The aim of this work is to understand the influence of chaotic states in control problems involving strong fields. Towards this end, we numerically construct and study the strong field control landscape of a bichromatically driven double well. A novel measure based on correlating the overlap intensities between Floquet states and an initial phase space coherent state with the parametric motion of the quasienergies is used to construct and interpret the landscape features. "Walls" of no control, robust under variations of the relative phase between the fields, are seen on the control landscape and associated with multilevel interactions involving chaotic Floquet states.Comment: 9 pages and 6 figures. Rewritten and expanded version of arXiv:0707.4547 [nlin.CD]. Accepted for publication in J. Chem. Phys. (2008
    • …
    corecore