406 research outputs found

    A Regression Discontinuity Design for Ordinal Running Variables: Evaluating Central Bank Purchases of Corporate Bonds

    Full text link
    Regression discontinuity (RD) is a widely used quasi-experimental design for causal inference. In the standard RD, the assignment to treatment is determined by a continuous pretreatment variable (i.e., running variable) falling above or below a pre-fixed threshold. In the case of the corporate sector purchase programme (CSPP) of the European Central Bank, which involves large-scale purchases of securities issued by corporations in the euro area, such a threshold can be defined in terms of an ordinal running variable. This feature poses challenges to RD estimation due to the lack of a meaningful measure of distance. To evaluate such program, this paper proposes an RD approach for ordinal running variables under the local randomization framework. The proposal first estimates an ordered probit model for the ordinal running variable. The estimated probability of being assigned to treatment is then adopted as a latent continuous running variable and used to identify a covariate-balanced subsample around the threshold. Assuming local unconfoundedness of the treatment in the subsample, an estimate of the effect of the program is obtained by employing a weighted estimator of the average treatment effect. Two weighting estimators---overlap weights and ATT weights---as well as their augmented versions are considered. We apply the method to evaluate the causal effect of the CSPP and find a statistically significant and negative effect on corporate bond spreads at issuance.Comment: Also available as Temi di discussione (Economic working papers) 1213, Bank of Italy, Economic Research and International Relations Are

    A review of domain adaptation without target labels

    Full text link
    Domain adaptation has become a prominent problem setting in machine learning and related fields. This review asks the question: how can a classifier learn from a source domain and generalize to a target domain? We present a categorization of approaches, divided into, what we refer to as, sample-based, feature-based and inference-based methods. Sample-based methods focus on weighting individual observations during training based on their importance to the target domain. Feature-based methods revolve around on mapping, projecting and representing features such that a source classifier performs well on the target domain and inference-based methods incorporate adaptation into the parameter estimation procedure, for instance through constraints on the optimization procedure. Additionally, we review a number of conditions that allow for formulating bounds on the cross-domain generalization error. Our categorization highlights recurring ideas and raises questions important to further research.Comment: 20 pages, 5 figure

    Bridging the Gap: Towards an Expanded Toolkit for ML-Supported Decision-Making in the Public Sector

    Full text link
    Machine Learning (ML) systems are becoming instrumental in the public sector, with applications spanning areas like criminal justice, social welfare, financial fraud detection, and public health. While these systems offer great potential benefits to institutional decision-making processes, such as improved efficiency and reliability, they still face the challenge of aligning intricate and nuanced policy objectives with the precise formalization requirements necessitated by ML models. In this paper, we aim to bridge the gap between ML and public sector decision-making by presenting a comprehensive overview of key technical challenges where disjunctions between policy goals and ML models commonly arise. We concentrate on pivotal points of the ML pipeline that connect the model to its operational environment, delving into the significance of representative training data and highlighting the importance of a model setup that facilitates effective decision-making. Additionally, we link these challenges with emerging methodological advancements, encompassing causal ML, domain adaptation, uncertainty quantification, and multi-objective optimization, illustrating the path forward for harmonizing ML and public sector objectives

    Towards Robust Off-Policy Evaluation via Human Inputs

    Full text link
    Off-policy Evaluation (OPE) methods are crucial tools for evaluating policies in high-stakes domains such as healthcare, where direct deployment is often infeasible, unethical, or expensive. When deployment environments are expected to undergo changes (that is, dataset shifts), it is important for OPE methods to perform robust evaluation of the policies amidst such changes. Existing approaches consider robustness against a large class of shifts that can arbitrarily change any observable property of the environment. This often results in highly pessimistic estimates of the utilities, thereby invalidating policies that might have been useful in deployment. In this work, we address the aforementioned problem by investigating how domain knowledge can help provide more realistic estimates of the utilities of policies. We leverage human inputs on which aspects of the environments may plausibly change, and adapt the OPE methods to only consider shifts on these aspects. Specifically, we propose a novel framework, Robust OPE (ROPE), which considers shifts on a subset of covariates in the data based on user inputs, and estimates worst-case utility under these shifts. We then develop computationally efficient algorithms for OPE that are robust to the aforementioned shifts for contextual bandits and Markov decision processes. We also theoretically analyze the sample complexity of these algorithms. Extensive experimentation with synthetic and real world datasets from the healthcare domain demonstrates that our approach not only captures realistic dataset shifts accurately, but also results in less pessimistic policy evaluations.Comment: 10 pages, 5 figures, 1 table. Appeared at AIES '22: Proceedings of the 2022 AAAI/ACM Conference on AI, Ethics, and Society. Expanded version of arXiv:2103.1593

    Diagnosing Model Performance Under Distribution Shift

    Full text link
    Prediction models can perform poorly when deployed to target distributions different from the training distribution. To understand these operational failure modes, we develop a method, called DIstribution Shift DEcomposition (DISDE), to attribute a drop in performance to different types of distribution shifts. Our approach decomposes the performance drop into terms for 1) an increase in harder but frequently seen examples from training, 2) changes in the relationship between features and outcomes, and 3) poor performance on examples infrequent or unseen during training. These terms are defined by fixing a distribution on XX while varying the conditional distribution of Y∣XY \mid X between training and target, or by fixing the conditional distribution of Y∣XY \mid X while varying the distribution on XX. In order to do this, we define a hypothetical distribution on XX consisting of values common in both training and target, over which it is easy to compare Y∣XY \mid X and thus predictive performance. We estimate performance on this hypothetical distribution via reweighting methods. Empirically, we show how our method can 1) inform potential modeling improvements across distribution shifts for employment prediction on tabular census data, and 2) help to explain why certain domain adaptation methods fail to improve model performance for satellite image classification
    • …
    corecore