223 research outputs found

    Spread spectrum-based video watermarking algorithms for copyright protection

    Get PDF
    Merged with duplicate record 10026.1/2263 on 14.03.2017 by CS (TIS)Digital technologies know an unprecedented expansion in the last years. The consumer can now benefit from hardware and software which was considered state-of-the-art several years ago. The advantages offered by the digital technologies are major but the same digital technology opens the door for unlimited piracy. Copying an analogue VCR tape was certainly possible and relatively easy, in spite of various forms of protection, but due to the analogue environment, the subsequent copies had an inherent loss in quality. This was a natural way of limiting the multiple copying of a video material. With digital technology, this barrier disappears, being possible to make as many copies as desired, without any loss in quality whatsoever. Digital watermarking is one of the best available tools for fighting this threat. The aim of the present work was to develop a digital watermarking system compliant with the recommendations drawn by the EBU, for video broadcast monitoring. Since the watermark can be inserted in either spatial domain or transform domain, this aspect was investigated and led to the conclusion that wavelet transform is one of the best solutions available. Since watermarking is not an easy task, especially considering the robustness under various attacks several techniques were employed in order to increase the capacity/robustness of the system: spread-spectrum and modulation techniques to cast the watermark, powerful error correction to protect the mark, human visual models to insert a robust mark and to ensure its invisibility. The combination of these methods led to a major improvement, but yet the system wasn't robust to several important geometrical attacks. In order to achieve this last milestone, the system uses two distinct watermarks: a spatial domain reference watermark and the main watermark embedded in the wavelet domain. By using this reference watermark and techniques specific to image registration, the system is able to determine the parameters of the attack and revert it. Once the attack was reverted, the main watermark is recovered. The final result is a high capacity, blind DWr-based video watermarking system, robust to a wide range of attacks.BBC Research & Developmen

    Digital Image Watermarking in Wavelet Domain

    Get PDF
    Internet allows individuals to share the information.  The shared information is like text, image, audio and video files.  This information sharing results in some problems such as copyright violation, unauthorized use of documents. Such problems can be solved by using a technique called as digital watermarking. This paper presents different aspects of watermarking and how it is useful for intellectual property protection on internet.DOI:http://dx.doi.org/10.11591/ijece.v3i1.174

    Steganography: a class of secure and robust algorithms

    Full text link
    This research work presents a new class of non-blind information hiding algorithms that are stego-secure and robust. They are based on some finite domains iterations having the Devaney's topological chaos property. Thanks to a complete formalization of the approach we prove security against watermark-only attacks of a large class of steganographic algorithms. Finally a complete study of robustness is given in frequency DWT and DCT domains.Comment: Published in The Computer Journal special issue about steganograph

    Digital Video Watermarking Robust Against Camcorder Recording Based on DWT-SVD

    Get PDF
    In order to reduce the block effects in the dark regions and improve the flicker in the bright regions of the existing video watermark algorithms, we propose an improved video watermarking algorithm against camcorder recording based on DWT-SVD. In proposed algorithm, 3th level Discrete Wavelet Transform (DWT) is applied to Y luminance of every single frame, and Singular Value Decomposition (SVD) is used on sub-band of DWT. Watermark sequence is embedded by fine-tuning the singular value of consecutive frames. Experimental results show that the proposed algorithm is robust against many different attacks such as geometric attack, signal processing and camcorder recording. Moreover, the proposed scheme can reduce the blocks effect and improve the flicker by embedding watermark into edge feature of video frame. Although, the method can provide high video quality than the existing schemes, however, it is not robust to strong compression such as MPEG

    Robust Image Watermarking Using QR Factorization In Wavelet Domain

    Get PDF
    A robust blind image watermarking algorithm in wavelet transform domain (WT) based on QR factorization, and quantization index modulation (QIM) technique is presented for legal protection of digital images. The host image is decomposed into wavelet subbands, and then the approximation subband is QR factorized. The secret watermark bit is embedded into the R vector in QR using QIM. The experimental results show that the proposed algorithm preserves the high perceptual quality. It also sustains against JPEG compression, and other image processing attacks. The comparison analysis demonstrates the proposed scheme has better performance in imperceptibility and robustness than the previously reported watermarking algorithms

    A novel QR-code based watermarking scheme for digital rights

    Get PDF
    This paper presents a digital rights protection scheme for both colour and grayscale images using a novel approach that combines watermarking and cryptography. The schema involves two parties: the owner of the digital rights and a generic user who acquired some rights on a copy of the image that will be watermarked. The watermark, a QR code derived from a signed “License Agreement”, is repeatedly inserted, and scrambled, by the image right’s owner, into the frequency components of the image, thus producing the watermarked image. The schema, a non-blind type, achieves good perceptive quality and fair robustness using the 3rd level of the Discrete Wavelet Transform. The experimental results show that, inserting more occurrences of a scrambled QR code, the proposed algorithm is quite resistant to JPEG compression, rotation, cropping and salt & peeper noise

    Encryption and Secure Transmission of Telemedicinal Image in Watermarking using DWT HAAR Wavelet Algorithm

    Get PDF
    This is a result paper .In this paper, watermarking using DWT Haar wavelet algorithm is used.In this papera patient brain image which is to be transmitted using telemedicine is encrypted and the records of patient brain condition is hidden along with patients document and is transmitted along the channel which can not be decrypted by any unauthorized section. The main aim of this paper is to hide the patient information along with the image and to encrypt and transmit the data along with images and to protect it from different kind of attacks and noise that mainly take place in channels. The purpose of using watermarking is that watermarking does not influence the diagnosis to be made by reducing the visual clarity of medical images. Watermarking is implemented here using DWT haar wavelet and the process include complete copyright protection. Experimental result show high imperceptibility where there is no noticeable change in the watermarked image and original image and the patients records is also hidden along with the image which is to be transmitted along the channel that cannot be hacked or attacked by any unauthorized section. The robustness of watermarking scheme is analysed by means of performance evaluation of peak signal to noise ratio (PSNR) DOI: 10.17762/ijritcc2321-8169.150516

    An Efficient Digital Image Watermarking Based on DCT and Advanced Image Data Embedding Method

    Get PDF
    Digital image enhancement and digital content or data image secure using DCT and advanced image data embedding method (AIDEM). AIDEM improved robustness based on particle shifting concept is reproduced secure image data and manipulated there’s a robust would like for a digital image copyright mechanism to be placed in secure image data. There’s a necessity for authentication of the content because of the owner. It’s become more accessible for malicious parties to create scalable copies of proprietary content with any compensation to the content owner. Advanced Watermarking is being viewed as a potential goal to the current downside. Astounding watermarking plans are arranged assaults on the watermarked picture are twisted and proposed to give insurance of proprietorship freedoms, information treating, and information uprightness. These methods guarantee unique information recuperation from watermarked information, while irreversible watermarking plans safeguard proprietorship freedoms. This attribute of reversible watermarking has arisen as an applicant answer for the assurance of proprietorship freedoms of information, unfortunate to alterations, for example, clinical information, genetic information, Visa, and financial balance information. These attacks are also intentional or unintentional. The attacks are classified as geometric attacks. This research presents a comprehensive and old method of these techniques that are developed and their effectiveness. Digital watermarking was developed to supply copyright protection and owners’ authentication. Digital image watermarking may be a methodology for embedding some information into digital image sequences, like text image, image data, during this research analysis on image watermarking and attacks on watermarking process time image data, classification of watermarking and applications. We aim to secure image data using advanced image data embedding method (AIDEM) improved robustness based particle shifting concept is reproduced secure image data. To develop compelling digital image watermarking methodology using mat lab tool and reliable and robust

    Color Image Watermarking Based on Radon Transform and Jordan Decomposition

    Get PDF
    Digital watermarking has been widely used for ownership identification and copyright protection. In this chapter, a color image watermarking method based on Radon transform (RT) and Jordan decomposition (JD) is proposed. Initially, the host color image is converted into L*a*b* color space. Then, the b* channel is selected and it is divided into 16 × 16 non-overlapping blocks. RT is applied to each of these blocks. JD is applied to the selected RT coefficients of each block represented in m × n matrix. Watermark data is embedded in the coefficients of the similarity transform matrix obtained from JD using a new quantization equation. Experimental results indicate that the proposed method is highly robust against various attacks such as noise addition, cropping, filtering, blurring, rotation, JPEG compression etc. In addition, it provides high quality watermarked images. Moreover, it shows superior performance than the state-of-the-art methods reported recently in terms of imperceptibility and robustness
    • …
    corecore