5,333 research outputs found

    Siamese Instance Search for Tracking

    Get PDF
    In this paper we present a tracker, which is radically different from state-of-the-art trackers: we apply no model updating, no occlusion detection, no combination of trackers, no geometric matching, and still deliver state-of-the-art tracking performance, as demonstrated on the popular online tracking benchmark (OTB) and six very challenging YouTube videos. The presented tracker simply matches the initial patch of the target in the first frame with candidates in a new frame and returns the most similar patch by a learned matching function. The strength of the matching function comes from being extensively trained generically, i.e., without any data of the target, using a Siamese deep neural network, which we design for tracking. Once learned, the matching function is used as is, without any adapting, to track previously unseen targets. It turns out that the learned matching function is so powerful that a simple tracker built upon it, coined Siamese INstance search Tracker, SINT, which only uses the original observation of the target from the first frame, suffices to reach state-of-the-art performance. Further, we show the proposed tracker even allows for target re-identification after the target was absent for a complete video shot.Comment: This paper is accepted to the IEEE Conference on Computer Vision and Pattern Recognition, 201

    Holistic specifications for robust programs

    Get PDF
    Functional specifications describe what program components can do: the sufficient conditions to invoke components' operations. They allow us to reason about the use of components in a closed world setting, where components interact with known client code, and where the client code must establish the appropriate pre-conditions before calling into a component. Sufficient conditions are not enough to reason about the use of components in an \emph{open world} setting, where components interact with external code, possibly of unknown provenance, and where components may evolve over time. In this open world setting, we must also consider the possible external code. \emph{necessary} conditions, i.e, what are the conditions without which an effect will not happen. In this paper we propose the Chainmail specification language for writing {holistic specifications that focus on necessary conditions (as well as sufficient conditions). We give a formal semantics for \Chainmail, and discuss several examples. The core of \Chainmail has been mechanised in the Coq proof assistant
    • …
    corecore