46,629 research outputs found

    A Robust Variable Step Size Fractional Least Mean Square (RVSS-FLMS) Algorithm

    Full text link
    In this paper, we propose an adaptive framework for the variable step size of the fractional least mean square (FLMS) algorithm. The proposed algorithm named the robust variable step size-FLMS (RVSS-FLMS), dynamically updates the step size of the FLMS to achieve high convergence rate with low steady state error. For the evaluation purpose, the problem of system identification is considered. The experiments clearly show that the proposed approach achieves better convergence rate compared to the FLMS and adaptive step-size modified FLMS (AMFLMS).Comment: 15 pages, 3 figures, 13th IEEE Colloquium on Signal Processing & its Applications (CSPA 2017

    A MRAS-based Learning Feed-forward Controller

    Get PDF
    Inspired by learning feed–forward control structures, this paper considers the adaptation of the parameters of a model–reference based learning feed–forward controller that realizes an inverse model of the process. The actual process response is determined by a setpoint generator. For linear systems it can be proved that the controlled system is asymptotically stable in the sense of Liapunov. Compared with more standard model reference configurations this system has a superior performance. It is fast, robust and relatively insensitive for noisy measurements. Simulations with an arbitrary second–order process and with a model of a typical fourth–ordermechatronics process demonstrate this

    Tracking control with adaption of kites

    Full text link
    A novel tracking paradigm for flying geometric trajectories using tethered kites is presented. It is shown how the differential-geometric notion of turning angle can be used as a one-dimensional representation of the kite trajectory, and how this leads to a single-input single-output (SISO) tracking problem. Based on this principle a Lyapunov-based nonlinear adaptive controller is developed that only needs control derivatives of the kite aerodynamic model. The resulting controller is validated using simulations with a point-mass kite model.Comment: 20 pages, 12 figure

    Sufficient Conditions for Feasibility and Optimality of Real-Time Optimization Schemes - I. Theoretical Foundations

    Get PDF
    The idea of iterative process optimization based on collected output measurements, or "real-time optimization" (RTO), has gained much prominence in recent decades, with many RTO algorithms being proposed, researched, and developed. While the essential goal of these schemes is to drive the process to its true optimal conditions without violating any safety-critical, or "hard", constraints, no generalized, unified approach for guaranteeing this behavior exists. In this two-part paper, we propose an implementable set of conditions that can enforce these properties for any RTO algorithm. The first part of the work is dedicated to the theory behind the sufficient conditions for feasibility and optimality (SCFO), together with their basic implementation strategy. RTO algorithms enforcing the SCFO are shown to perform as desired in several numerical examples - allowing for feasible-side convergence to the plant optimum where algorithms not enforcing the conditions would fail.Comment: Working paper; supplementary material available at: http://infoscience.epfl.ch/record/18807
    • …
    corecore