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Abstract

The idea of iterative process optimization based on collected output mea-
surements, or “real-time optimization” (RTO), has gained much prominence in
recent decades, with many RTO algorithms being proposed, researched, and
developed. While the essential goal of these schemes is to drive the process
to its true optimal conditions without violating any safety-critical, or “hard”,
constraints, no generalized, unified approach for guaranteeing this behavior ex-
ists. In this two-part paper, we propose an implementable set of conditions that
can enforce these properties for any RTO algorithm. The first part of the work
is dedicated to the theory behind the sufficient conditions for feasibility and
optimality (SCFO), together with their basic implementation strategy. RTO
algorithms enforcing the SCFO are shown to perform as desired in several nu-
merical examples – allowing for feasible-side convergence to the plant optimum
where algorithms not enforcing the conditions would fail.

Keywords: real-time optimization, black-box optimization, constraint satisfac-
tion, optimization under uncertainty

1. Real-Time Optimization: Problem Structure, Characteristics, and
Challenges

The idea of optimization is present in many experimental settings, as it is
often the case that a user/operator is interested in finding the “best” set of
decision/design variables so as to minimize (maximize) a certain cost (profit)
criterion. Noting that many such problems will also involve constraints that
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limit the decision/design space of the variables, we may state the resulting
problem mathematically as follows:

minimize
u

φp(u)

subject to Gp(u) � 0
uL � u � uU

, (1)

with u ∈ Rnu denoting the manipulated decision variables (the “inputs”), φp :
Rnu → R the cost function to be minimized, Gp a set of ng inequality constraint
functions gp : Rnu → R, and uL and uU a set of lower and upper limits on the
inputs (the box constraints). We adopt the subscript p (i.e. the “plant”) to
signify that the corresponding functions are unknown, black-box, or uncertain,
i.e. that one may only evaluate them at various discrete instants by applying
various choices of u, with each choice amounting to a single experiment.

Given the generality of (1), it is not surprising that a great number of ap-
plications give rise to this problem. Examples include:

• steady-state optimization (Brdys & Tatjewski, 2005; Chen & Joseph, 1987;
Cheng & Zafiriou, 2004; Engell, 2007; Fatora & Ayala, 1992; Flemming
et al., 2007; Gao & Engell, 2005; Naysmith & Douglas, 1995; Tatjewski,
2008), where a plant operator is interested in finding operating conditions
that maximize the profit of a dynamic plant at steady state,

• optimization of a dynamic profile in a batch process (Costello et al., 2011;
François et al., 2005; Georgakis, 2009; Kadam et al., 2007; Srinivasan
et al., 2003a,b), where the inputs are the “handles” used to parameterize,
in some parsimonious fashion, the trajectory being optimized,

• any application where experiments are carried out to optimize a response
for which a model is not available, typically done using design-of-experiments
and response-surface methods (see, e.g., Myers et al. (2009) and the ex-
amples therein),

• controller tuning/design (Bunin et al., 2012a, 2013a; Hjalmarsson et al.,
1998; Karimi et al., 2004; Killingsworth & Krstić, 2006; Magni et al., 2009),
where one is interested in finding the controller parameters that yield the
best closed-loop performance,

• numerical optimization where function evaluations are “expensive” (Conn
et al., 2009), e.g. problems where evaluating a function is time-consuming
as it involves simulating a system of differential equations (Vugrin, 2003),

among others.
Because the functions involved are unknown, it is evident that one cannot

hope to solve Problem (1) directly and without any experimentation. We may,
however, attempt to solve the problem iteratively – that is, we may apply certain
choices of u, measure the results, and then apply “more intelligent” choices of
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Figure 1: Generalized feedback structure of RTO schemes.

u based on what we have learned. A general formulation of such an approach
may be given as:

u∗k+1 = Γ(u0, ...,uk,y0, ...,yk)
uk+1 = uk +K(u∗k+1 − uk)

, (2)

where y ∈ Rny denotes the measurements (the “outputs”), k the iteration (ex-
periment) counter, and Γ(·) some prescribed adaptation law to yield an “opti-
mal” target u∗k+1 for the next experiment, which is often filtered with a gain
of K ∈ [0, 1] as a safety precaution (Brdys & Tatjewski, 2005). It is precisely
this iterative nature of (2) that introduces the “real-time” element. We will,
hereafter, refer to Γ(·) as a real-time optimization (RTO) algorithm, and to any
problem having the form of (1) that is solved by (2) as an RTO problem. A
graphical illustration of the iterative RTO procedure is presented in Figure 1.

Unfortunately, RTO problems rarely have “neat” solutions, and a number of
complications arise due to the experimental nature of the problem. The major
culprit is, of course, the black-box nature of the problem – one does not know
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the analytical properties of φp and Gp, thereby making it impossible to optimize
via even the simplest numerical approaches like the gradient descent, let alone
via more elegant (e.g. interior-point) methods. A typical strategy in many RTO
algorithms (Brdys & Tatjewski, 2005; Bunin et al., 2012b; Gao & Engell, 2005;
Marchetti et al., 2010; Rodger, 2010; Tadej & Tatjewski, 2001) is to estimate
the gradient from discrete measurements, but this is often made difficult by
the presence of measurement noise, thereby requiring a number of precautions
and/or limitations for such an estimation to be effective. Another pressing dif-
ficulty is feasibility, since the inequality constraints Gp may be safety-critical
or “hard”, in which case one is strictly forbidden from applying any u that vio-
lates one of the inequalities, as doing so may promote hazardous conditions that
either endanger the personnel or irreversibly damage the experimental equip-
ment. Finally, the innately costly nature of performing experiments generally
demands that RTO algorithms move quickly and that they move in the right
direction – an RTO algorithm that does not lead to immediate improvement
may be abandoned after only a few iterations, while an algorithm that promises
optimality, but only after 10,000 iterations, may never be implemented in the
first place.

In spite of these challenges, a number of RTO algorithms have been proposed
over the years and may be summarized (more or less completely) as follows:

• model-based approaches where a parametric model of Problem (1) is avail-
able and where the measurements are used for parameter estimation, af-
ter which the updated parametric model is optimized numerically to yield
u∗k+1 (Chen & Joseph, 1987; Fatora & Ayala, 1992; Jang et al., 1987;
Naysmith & Douglas, 1995),

• model-based approaches where bias correction terms are estimated and
added to the model, with a numerical optimization of the corrected model
used to yield u∗k+1 (Brdys & Tatjewski, 2005; François & Bonvin, 2013;
Gao & Engell, 2005; Marchetti, 2009; Roberts, 1978; Xu & Cheng, 2008),

• response-surface methods that are based on optimal experimental design
(Georgakis, 2009; Myers et al., 2009), where a (usually quadratic) model
is built from the collected measurements and then optimized (u∗k+1 often
becoming fixed once this is done),

• direct-search methods that attempt to estimate and use the gradient (Box
& Wilson, 1951; Bunin et al., 2012a; François et al., 2005; Garcia & Morari,
1984; Killingsworth & Krstić, 2006), akin to the standard gradient-descent
algorithm in numerical optimization (u∗k+1 being a step in the gradient
descent direction),

• derivative-free methods that avoid estimating the gradient entirely and
optimize purely via zero-order knowledge (Alexandrov et al., 1997; Box
& Draper, 1969; Conn et al., 2009; Holmes, 2003), with u∗k+1 defined
differently depending on the algorithm used,
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together with any hybrids/variations of the above.
However, even with this variety of methods, the state-of-the-art in RTO re-

mains largely ad hoc, as none of the above approaches are capable of overcoming
the stated challenges and consistently solving Problem (1) to local optimality
without violating the hard constraints in the process. As such, while one algo-
rithm may perform well for a certain problem, it may perform quite poorly (or
even be dangerous) for another. The result is an additional burden on the user,
as even conceptual guarantees of feasibility and optimality are absent in these
algorithms.

Our goal in this work is not to propose an algorithm that solves all of these
issues – rather, we aim to propose a set of sufficient conditions that serve to
ensure the desired properties while being applicable to any RTO algorithm that
falls into the framework of Figure 1. In doing so, we hope to help lay the
foundations for an RTO theory in a field that has often relied on heuristic
approaches without rigorous guarantees. For convenience, we will refer to the
full set of these conditions by the acronym SCFO (the “sufficient conditions for
feasibility and optimality”).

The basic idea of the SCFO is to ensure that the next applied iterate, uk+1,
always fall into the local feasible descent space1 and that the distance between
uk and uk+1 be small enough so as to ensure that the applied iterate will
both be feasible and have an improved cost. The main contribution of this
work is the theory and rigor behind this strategy (detailed in Theorems 2-
5). The secondary contribution is the algorithm proposed for the basic SCFO
implementation, which takes the input target provided by the RTO algorithm
and projects it onto the local feasible descent space in such a manner so as
to ultimately enforce the desired feasible-side convergence without introducing
major performance drawbacks (i.e. very slow convergence speed).

In order to properly establish the aforementioned guarantees, we are forced
to make several basic assumptions throughout this paper:

A1: The functions φp and Gp are twice continuously differentiable over the
relevant input space I = {u : uL � u � uU}.

A2: The initial point, u0, is strictly feasible with respect to the inequality
constraints (Gp(u0) ≺ 0).

A3: For every function gp,j , j = 1, ..., ng, there exists an εm,j > 0 such that,
for any given iteration k, 0 ≥ gp,j(uk) ≥ −εm,j ⇒ ∇gp,j(uk) 6= 0.

A4: All RTO algorithms considered will never yield a target outside of I, i.e.
u∗k+1 ∈ I always.

Here, Assumption A1 is required for the existence of 1st- and 2nd-order upper
bounds (see Section 2), as well as for the existence of the gradients of the cost

1The space where every choice of u is guaranteed to both decrease the cost and to satisfy
the plant constraints locally.
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and constraints, while Assumption A2 is required for feasibility (Section 3).
Assumption A3 is required to formally avoid the (somewhat pathological) case
where an active constraint has a gradient of zero, and is subsumed by the more
standard linear independence constraint qualification (e.g. Fletcher, 1987, Ch.
9). Assumption A4 aids in simplifying some of the derivations and proofs in
this work.

In this first part of the two-part contribution, the SCFO are stated and
proven conceptually. As such, more importance is given to theory and less to
practical aspects. Particularly, the following are assumed to be available:

• Knowledge of the gradients of φp and Gp at the current iteration k.

• Knowledge of global Lipschitz constants for Gp.

• Knowledge of a global quadratic upper bound for φp.

• Knowledge of the exact values of Gp at the current iteration k (i.e. noise-
free measurements, or perfect estimates, of the constraints).

The results presented in this first part are thus not directly applicable per se,
and serve only to provide a theoretical base. Additionally, as our focus is solely
on feasibility and optimality, the notion of convergence speed is also absent from
our discussions. In the sequel paper (Bunin et al., 2013b), the practical imple-
mentation issues are treated in detail, considering the cases where the knowledge
of the four items above is imperfect, as well as proposing modifications to the
SCFO that may greatly speed up the convergence of a given algorithm.

The remainder of this paper is structured as follows. Following the presen-
tation of the key mathematical concepts in Section 2, we dedicate Section 3 to
the feasibility problem of meeting the hard constraints at every RTO iteration,
which makes up the bulk of the paper and presents the core components of the
theoretical contribution. Guaranteeing convergence to a Karush-Kuhn-Tucker
(KKT) point via feasible iterates is then the subject of Section 4, and acts as
a natural extension of the theory presented in the section before. Numerical
examples are given in both sections to illustrate the methodology for a simple
two-dimensional case with readily available geometric representations. Section 5
then serves to conclude the paper with a summary and discussion of the results
and their potential significance in the RTO community.

2. Mathematical Preliminaries

Here, we present the tools and definitions that will act as the foundation for
the results that follow in Sections 3 and 4.

A key necessity for the theory proposed in this work is to be able to up-
per bound the evolution (the worst-case possible growth) of twice continuously
differentiable black-box functions, generalized here by f : Rnu → R, over the
compact input space I. For convenience and cohesion with results that come
later, this is always done with respect to the input point uk, which may be
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thought of as the current iterate at the current RTO iteration k. The following
two bounds, one linear and one quadratic, are proposed in Lemmas 1 and 2,
respectively.

Lemma 1. (Linear Upper Bound on the Evolution of an Unknown
Function)

Let f be continuously differentiable over I, so that:

−κi <
∂f

∂ui

∣∣∣
u
< κi, ∀u ∈ I, i = 1, ..., nu, (3)

where κ are the univariate Lipschitz constants of f .
Then, the evolution of f between any uk,uk+1 ∈ I \ {uk,uk+1 : uk = uk+1}

may be strictly bounded as:

f(uk+1)− f(uk) <

nu∑
i=1

κi|uk+1,i − uk,i|. (4)

Proof. Start by defining:

∆i =

[
Ii 0
0 0nu−i

]
, (5)

i.e. an nu×nu diagonal matrix with the first i diagonal elements equal to 1 and
the remaining nu − i equal to 0. This allows us to write the evolution of f as
the summation of its decoupled, univariate evolutions in the following compact
form:

f(uk+1)−f(uk) =

nu∑
i=1

(
f(uk+∆i(uk+1−uk))−f(uk+∆i−1(uk+1−uk))

)
. (6)

From (3) and the definition of the Lipschitz constant for the univariate case,
it follows that:

f(uk + ∆i(uk+1 − uk))− f(uk + ∆i−1(uk+1 − uk)) ≤ κi|uk+1,i − uk,i|, (7)

with strict inequality when uk+1,i 6= uk,i. Since uk 6= uk+1, it follows that
∃i : uk+1,i 6= uk,i and, summing (7) for i = 1, ..., nu, we immediately have the
result in (4). �

Lemma 2. (Quadratic Upper Bound on the Evolution of an Unknown
Function)

Let f be twice continuously differentiable over I, so that:

−Mij <
∂2f

∂ui∂uj

∣∣∣
u
< Mij , ∀u ∈ I, i, j = 1, ..., nu. (8)
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Then, the evolution of f between any uk,uk+1 ∈ I may be bounded as:

f(uk+1)− f(uk) ≤ ∇f(uk)T (uk+1 − uk) +
1

2
(uk+1 − uk)TQ(uk+1 − uk), (9)

where Q � 0 is the quadratic upper bound, a diagonal matrix with its diagonal
elements defined as:

Qii =

nu∑
j=1

Mij , i = 1, ..., nu. (10)

Proof. We refer the reader to the appendix. �

Also common throughout the discussion that follows is the notion of descent
halfspaces and approximately active (ε-active) constraints. We define these as
follows.

Definition 1. (Local Descent Halfspace)
The strict local descent halfspace of f at uk is defined as the set {u :

∇f(uk)T (u−uk) < 0}. Its nonstrict approximation is defined as {u : ∇f(uk)T

(u − uk) ≤ −δ, δ > 0}, with the quality of the approximation increasing as
δ → 0.

Definition 2. (ε-Active Constraints)
A constraint gp,j is said to be ε-active at iteration k if, for εj > 0, 0 >

gp,j(uk) ≥ −εj. This is used to approximate an active constraint set by an
ε-active set, with the quality of approximation increasing as εj → 0.

We now combine the concepts of the descent halfspace and the quadratic
upper bound to derive a sufficient step size and step direction to guarantee
strict descent for f . This is crucial both to guarantee that an algorithm can
preserve feasibility without converging prematurely to a constraint (Section 3)
and to guarantee that an algorithm can decrease the cost at every iteration
(Section 4).

Lemma 3. (Guaranteed Descent Step)
Let u∗k+1 lie in the strict local descent halfspace of f at uk and let K be the

step size in the direction u∗k+1−uk, so that the next iterate is defined as in (2).
A strict descent in the function value, i.e. f(uk+1) < f(uk), is guaranteed if
the following condition holds:

0 < K < −2
∇f(uk)T (u∗k+1 − uk)

(u∗k+1 − uk)TQ(u∗k+1 − uk)
, (11)

with Q � 0 defined as in (10).
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Proof. The maximum value that f(uk+1) can take is given by Lemma 2:

f(uk+1) = f(uk) +∇f(uk)T (uk+1 −uk) +
1

2
(uk+1 −uk)TQ(uk+1 −uk), (12)

where substituting the update law of (2) readily yields:

f(uk+1) = f(uk)+K∇f(uk)T (u∗k+1−uk)+
K2

2
(u∗k+1−uk)TQ(u∗k+1−uk), (13)

which is quadratic in K and satisfies f(uk+1) = f(uk) for:

K = 0,−2
∇f(uk)T (u∗k+1 − uk)

(u∗k+1 − uk)TQ(u∗k+1 − uk)
, (14)

with the latter forced to be strictly positive from the definition of a strict local
descent halfspace (i.e. strictly negative numerator) and the strict positivity of
the denominator.

As (13) must be strictly convex in K, it follows that f(uk+1) < f(uk) for
all values of K between the two bounds of (14). �

Finally, the algorithm that enforces the SCFO relies on projecting, at every
iteration, the RTO target onto a local feasible descent space, which is char-
acterized by an intersection of halfspaces. To prove that this projection will
always be feasible unless a KKT point has been reached, the following theorem
of alternatives will be needed.

Theorem 1. (Gale’s Theorem)
Let Jk = [∇f1(uk)...∇fn(uk)] and consider the set {u : JTk (u− uk) � −δ}.

This set is empty and does not admit a solution iff:

∃ν ∈ Rn+ :

n∑
i=1

νi∇fi(uk) = 0, −νT δ < 0. (15)

Proof. This is a well-known result in linear programming (Rockafellar, 1970,
Th. 22.1). �

3. Feasibility Guarantees

The goal of this section is to focus on the guaranteed satisfaction of hard
constraints, i.e. on constraints that, for safety reasons, must never be violated2.
We start with a brief review of the existing methods for enforcing RTO feasibil-
ity, and then proceed to propose a new feasibility-guaranteeing condition based

2So as to work with the most limiting case, we will hereafter assume that all of the con-
straints in Gp are hard, i.e. it is required that Gp(uk) � 0, ∀k.
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on the use of an adaptive filter gain in the input adaptation step (2), with the
filter gain at iteration k a function of the constraint values at iteration k and the
Lipschitz constants for those constraints. A drawback of the proposed approach
is in its potentially premature convergence, and so we propose conditions that
allow the algorithm to avoid this problem. Several examples are then given to
illustrate the presented ideas.

3.1. Approaches to Guaranteeing Feasibility

Some of the more theoretically elegant approaches to enforcing the feasi-
bility of (1) include the stochastic (“chance constraint”) and worst-case robust
approaches, which require a model of the constraints and are generally used in an
initial design phase (Beyer & Sendhoff, 2007), though they may be used for RTO
needs when the model is adapted (Flemming et al., 2007; Zhang et al., 2002).
In all cases, parametric uncertainty in the model is assumed and quantified. As
a simple illustration of what this entails, suppose that a single constraint gp,j is
uncertain due to a single uncertain parameter θ, known to lie in the set Θ, and
that we would like to guarantee the following:

gp,j(uk+1) ≤ 0, (16)

by guaranteeing:

sup
θ∈Θ

gj(uk+1, θ) ≤ 0, (17)

where gj : Rnu → R is the parametric model.
The standard stochastic approach supposes a probability distribution for

the possible values of θ and attempts to satisfy (17) with a specified probability,
while the worst-case approach essentially attempts to do the same but with a
probability of 1. The latter is generally considered as being very conservative
since it accounts for all possible deviations, while the former suffers from the
lack of robustness introduced by allowing the constraint to be violated, if only
with a low probability.

While these methods are theoretically sound, there are several difficulties
in applying them to RTO problems (Quelhas et al., 2013). The immediate is-
sue that should come to mind is the initial assumption that the uncertainty is
parametric, which will not hold in the general case. When structural uncer-
tainties are present, it follows that both approaches lose their theoretical rigor,
with the degree of the loss varying, naturally, with the amount of structural
uncertainty. Additionally, even when the parametric uncertainty assumption is
satisfied, obtaining the probability distributions or worst-case upper and lower
bounds on the parameters may be a very challenging task. Finally, the problem
may become computationally intractable, depending on the probability distri-
bution and the way in which the parameters enter into the constraint model.
This latter becomes particularly troublesome as the number of uncertain pa-
rameters and constraints grows. While it is sometimes proposed to solve this
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problem by linearizing the constraint model with respect to the uncertain pa-
rameters (Zhang et al., 2002), doing so may lead to significant inaccuracies when
the process is nonlinear – even if there is no structural uncertainty.

Some simpler methods of enforcing feasibility involve the use of back-offs on
the constraints (Govatsmack & Skogestad, 2005; Quelhas et al., 2013):

gj(uk+1, θ) + c ≤ 0, c > 0, (18)

or the use of limited input changes for each iteration (box constraints on the
input step sizes (Cheng & Zafiriou, 2000; Gao & Engell, 2005)):

uk −∆umax � uk+1 � uk + ∆umax. (19)

Both may be conservative, however, and are ultimately ad hoc approaches that
do not come with the desired guarantees of feasibility.

In view of all this, Bunin et al. (2011) proposed a simple but robust approach
that uses a variable filter gain Kk in the standard input filtering law (2):

uk+1 = uk +Kk

(
u∗k+1 − uk

)
, (20)

where the gain Kk is defined at iteration k in such a way so as to guarantee
gp,j(uk+1) < 0 provided that gp,j(uk) < 0. The following theorem, largely taken
from our previous work (Bunin et al., 2011), derives the adaptive upper bound
on the filter gain Kk so as to guarantee recursive feasibility for any RTO scheme.

Theorem 2. (Sufficient Condition for Feasibility)
Suppose that Gp(uk) ≺ 0, and that an RTO algorithm provides a new opti-

mal input target u∗k+1 6= uk that is then filtered according to (20) to give uk+1.
Then, enforcing the following upper bound on the adaptive filter gain:

Kk ≤ min
j=1,...,ng

 −gp,j(uk)
nu∑
i=1

κji|u∗k+1,i − uk,i|

 , (21)

with −κji < ∂gp,j
∂ui

∣∣∣
u
< κji,∀u ∈ I, is sufficient to guarantee that Gp(uk+1) ≺ 0.

Proof. Noting that Kk ∈ [0, 1] by definition, we treat two cases: Kk = 0
and Kk > 0. For the former, we have the trivial result that uk+1 = uk ⇒
Gp(uk+1) = Gp(uk) � 0, with feasibility guaranteed since the inputs are not
adapted.

When Kk > 0 it follows that uk+1 6= uk, which allows us to use Lemma 1
to write:

gp,j(uk+1) < gp,j(uk) +

nu∑
i=1

κji|uk+1,i − uk,i|, ∀j = 1, ..., ng. (22)
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Substituting in the filter law (20) for uk+1 then leads to:

gp,j(uk+1) < gp,j(uk) +Kk

nu∑
i=1

κji|u∗k+1,i − uk,i|, ∀j = 1, ..., ng. (23)

Let us now choose Kk in such a way so as to make the right-hand side less
than or equal to 0, which will clearly guarantee the same (with strict inequality)
for gp,j(uk+1):

gp,j(uk) +Kk

nu∑
i=1

κji|u∗k+1,i − uk,i| ≤ 0, ∀j = 1, ..., ng. (24)

Rearranging leads to:

Kk ≤
−gp,j(uk)

nu∑
i=1

κji|u∗k+1,i − uk,i|
, ∀j = 1, ..., ng. (25)

Now, to guarantee that this holds for all of the constraints, we simply take
the component-wise minimum, which leads to the expression in (21). �

Remarks

• We can now justify the initial supposition of Gp(uk) ≺ 0 a posteriori, since
Assumption A2 calls for Gp(u0) ≺ 0 and recursive feasibility is enforced
by (21) up to iteration k and beyond.

• The main concept of Theorem 2 is very simple. Namely, we bound the
worst-case evolution of the constraints (via the Lipschitz constants), cal-
culate how far we can move before one of them, in the worst case, reaches
its boundary, and then define the filter gain as the adaptive parameter
with which to control this distance. The benefits of the approach lie in
its generality, as it does not require the uncertainty to have any particu-
lar structure – everything is simply lumped into the worst-case growth of
the constraints. The adaptive element is also an advantage, in that the
gain is always a function of the current measured/estimated values of the
constraints. As such, when the plant is far away from the constraints, the
gain is naturally larger, and is reduced as the constraints are approached.
In the case of model-based RTO algorithms, this method also avoids intro-
ducing additional constraints into the original model-based optimization
problem, thus guaranteeing that tractability is never lost. Figure 2 illus-
trates the main idea of Theorem 2 geometrically.

We will, for the remainder of this section, adopt the following heuristic choice
of Kk:
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Figure 2: Geometric illustration of adaptive input filtering as a means of guaranteeing feasibil-
ity from iteration to iteration. Here, two constraints are considered. The green region denotes
the feasible space, with the yellow polytopes corresponding to the robust feasible areas that
are generated by the Lipschitz constants for each constraint. The adaptive filter gain value
may be any value that keeps all of the constraint values in their worst-case growth regions.
Here, the first constraint proves to be limiting.

Kk := min
j=1,...,ng

 −gp,j(uk)
nu∑
i=1

κji|u∗k+1,i − uk,i|

 , (26)

as taking the largest allowable Kk generally leads to faster progress for the RTO
algorithm.

3.2. Premature Convergence of the Adaptive Input Filter Method

By themselves, the input filtering law (20) and the upper bound on the
filter gain (21) are sufficient for feasibility, provided that the initial point u0 is
feasible. There is, however, a major algorithmic issue with using the inequality
(21), which may be illustrated as follows. Suppose that a single constraint gp,j
is active and its value is arbitrarily close3 to 0. In looking at the expression for
the adaptive filter gain in (21), it becomes clear that the bound on Kk will be
arbitrarily close to 0 as well. This, in turn, implies that the input is not adapted
and no further progress is made.

This issue has been pointed out previously (Bunin et al., 2011), and is illus-
trated in Figure 3 via a simple constructed example. Here, the RTO algorithm

3We insist on “arbitrarily close” since the Lipschitz bounds are strict and so the constraint
never reaches 0 exactly with the input filtering scheme as proposed in this work.
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Figure 3: An example illustrating premature convergence, where one of the constraints be-
comes active and brings the filter gain to an arbitrarily small value. As the segment [u∞,u∗k+1]
is infeasible, the algorithm converges to u∞ without being able to proceed further.

is perfect in that it provides the true plant optimum, u∗, at each iteration. How-
ever, because of the concave nature of one of the plant constraints, it is clear
that the iterates will eventually touch the boundary and remain arbitrarily close
to it without being able to advance any further.

Depending on the particular problem, the losses incurred from such prema-
ture convergence may or may not be significant. In Bunin et al. (2011), it was
argued that the majority of the optimality gains could be attained before one of
the constraints became active, and this was shown through a numerical example.
However, this may not hold always, and for processes that operate for a great
number of iterations converging prematurely without any further improvement
may not be an attractive result, even if feasibility is retained throughout. In
the following section, we show how using the constraint gradients allows us to
construct an algorithm that avoids premature convergence by “sliding” along
any constraints that are close to active.

3.3. Avoiding Premature Convergence

Prior to presenting an improved version of the method, it is first necessary
to characterize the degree to which the Lipschitz constants of the constraint
functions are strict.

Definition 3. (Degree of Strictness of the Lipschitz Constants)
Denoting by κ̃ the nonstrict Lipschitz constants, which allows the nonstrict

analogue to (3):
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−κ̃ji ≤
∂gp,j
∂ui

∣∣∣
u
≤ κ̃ji, ∀u ∈ I, i = 1, ..., nu, j = 1, ..., ng, (27)

the degree of strictness of the Lipschitz constants, γκ, is defined as:

γκ = max
i = 1, ..., nu
j = 1, ..., ng

κ̃ji
κji

. (28)

We now give the sufficient conditions for maintaining Kk above a certain
strictly positive value, thereby precluding the possibility of its becoming arbi-
trarily small, and thus avoiding premature convergence.

Theorem 3. (Sufficient Conditions for a Strictly Positive Adaptive
Filter Gain)

Let Kk be chosen as in (26). If u∗k+1 lies in the strict local descent halfspace
for all of the ε-active constraints:

∇gp,j(uk)T (u∗k+1 − uk) ≤ −δg,j , ∀j : gp,j(uk) ≥ −εj , (29)

with δg,j > 0, then:

Kk > min
j=1,...,ng

min

(
(1− γκ)εj , (1− γκ)

Kε,jδg,j
γκ

,−gp,j(u0)

)
κTj (uU − uL)

 > 0, (30)

where:

Kε,j =
2δg,j

(uU − uL)TQj(u
U − uL)

, (31)

κTj = [κj1 ... κjnu ] , (32)

and Qj � 0 denotes the quadratic upper bound for constraint gp,j as defined in
Lemma 2.

Proof. The theorem may be proven by exploiting the result of Lemma 3 and
showing that enforcing Condition (29) makes it impossible for any constraint,
and thereby Kk, to approach 0 since for a small enough step (Kε,j) one will be
forced to push the constraint away from activity. We refer the reader to the
appendix for the detailed proof. �

Several points of the theorem merit some discussion.

Geometric Interpretation of Theorem 3

The geometric interpretation of the above theorem is presented via two ex-
amples in Figure 4, and illustrates the role of Condition (29) in forcing the
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optimal input direction to lie in the strict local descent halfspace of an ε-active
constraint. The top example in Figure 4 shows this for a single convex con-
straint. When Condition (29) is met and the optimal direction lies in the strict
local descent halfspace (the lined area), it is easy to see that each optimal di-
rection will result, even if very locally, in a descent direction. The degree of
locality here depends on both the direction (how orthogonal it is to the hyper-
plane ∇gp(uk)T (u−uk) = 0) and the magnitude of the higher-order derivatives
(in some sense, Q). Concerning the effect of direction, it is easy to see that
directions orthogonal to the hyperplane would be steepest descent directions,
with the constraint value going down substantially locally. With regard to the
size of the nonlinear terms, we can imagine what would happen if, for example,
the higher-order derivatives of the constraint were much larger – this would
squeeze the feasible space in the top example in Figure 4 (shown via the dashed
blue lines and the double-lined region) and lead to both much shorter feasible
and descent steps if we were to follow the same optimal directions (arrowed
lines). Both of these cases are reflected analytically in the upper bound (11)
of Lemma 3 – steepest descent directions leading to a greater numerator and
thus larger steps, and larger higher-order derivatives (greater Q) leading to a
greater denominator and thus smaller steps. Finally, the illustration makes it
obvious that any optimal direction that consistently points into the local ascent
halfspace would lead to the constraint value approaching 0, thereby forcing the
algorithm to converge prematurely.

Significance of Q

It has been supposed throughout, both in the proofs of Lemma 3 and Theo-
rem 3, that Q � 0, as this represents the worst case with respect to the evolution
of Kk. If the constraint is strictly convex, then its higher-order evolution will
be positive definite and such worst-case behavior will be justified (indeed, this
is the case in the top example of Figure 4). We now consider the alternative
when Q � 0, which could be a valid upper bound when the constraint is concave
(e.g. a negative semidefinite quadratic). If we allow such a bound, then it is
clear from the analysis in the proof of Lemma 3 that gp,j(uk+1) < gp,j(uk) will
hold for all strictly positive values Kk, and indeed it becomes clear why if we
consider the interpretation in the bottom example of Figure 4. With a concave
constraint, the hyperplane ∇gp(uk)T (u−uk) = 0 supports the entire infeasible
side of the constraint, and the condition in (29) thereby guarantees that any
direction taken will only lead to both feasible and smaller values, regardless of
the filter gain. The strict descent halfspace is global in this case.

More generally speaking, the abstract purpose of Q is to help provide the
conceptual proof that Condition (29) will prevent Kk from going to 0 by always
allowing a local descent direction whose length will depend, in large part, on Q.
The fact that Q may never be known in practice therefore does not hinder us –
we only need it to exist. As such, one does not need to go through the trouble
of estimating Q and attempting to enforce the step size derived in Lemma
3, although being able to do so would provide a tool to guarantee immediate
descent at iteration k.
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Figure 4: A geometric interpretation of the sufficient condition for avoiding premature con-
vergence in the adaptive input filter scheme. In both examples, the lined area represents the
local descent halfspace for the relevant constraint, with the arrows used to show potential
directions that satisfy Condition (29) and for which sufficiently small step sizes will lead to
true descent for the plant constraint. In the top case, a second lined area, corresponding
to a hypothetical constraint with stronger nonlinear behavior, is also given, and it is clear
how the same directions for this alternate case would require much smaller steps to guarantee
true descent. The plant optimum, u∗, is only given as a visual aid, and does not play any
theoretical role here (as the focus is only on feasibility).
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The Zero-Gradient Case

It is clear that the Condition (29) cannot possibly be satisfied if ∇gp,j(uk)
= 0. Assumption A3 is used to avoid this case formally for a small enough
choice of ε.

The Strictness of the Lipschitz Constants

Not surprisingly, the strictness of the Lipschitz constants κ is a necessity, as
the absence of a strict linear bound (as in Lemma 1) allows the possibility of a
constraint becoming active, with its value exactly at 0. This is reflected in the
bound on Kk in (30), which approaches 0 as γκ → 1.

We next discuss how these ideas may be enforced algorithmically.

3.4. Basic Implementation

In general, there is no RTO algorithm that satisfies Condition (29) implicitly.
However, the target optimum u∗k+1 may be seen as a degree of freedom that
could be manipulated to fulfill (29) – it is, in fact, the only degree of freedom,
as the local gradient and current input are both fixed and cannot be modified.
What we can do then is to project the optimum given by the RTO algorithm
at iteration k in the appropriate manner4:

ū∗k+1 = arg minimize
u

∥∥u− u∗k+1

∥∥2

2

subject to ∇gp,j(uk)T (u− uk) ≤ −δg,j
∀j : gp,j(uk) ≥ −εj
uL � u � uU

, (33)

with ū∗k+1 then used in place of u∗k+1 in (20) and (21).
If (33) has a solution, then it is clear that Condition (29) will be satisfied

by the resulting ū∗k+1. We now prove the feasibility of (33) for the majority of
practical cases.

Theorem 4. (Feasibility of Projection (33))
Consider the Jacobian matrix, Jk ∈ Rnu×nJ , of a simplified constraint set of

(33) that only consists of the gradients of the ε-active constraints and those box
constraints that are active at iteration k (i : uk,i = uLi or uk,i = uUi ). Using
(̃·) to designate the inactive box constraints allows writing the constraint set of
(33) as5:

4The norm in the projection may be chosen depending on user preference and any necessary
scaling that may need to be taken into account (i.e. the inputs should be adjusted so that
they are of comparable magnitudes and have comparable sensitivities in the objective norm
function). For all of the examples that follow in this article, we use a squared 2-norm as the
default for any projections, with the chosen inputs already well scaled.

5The (abuse of) notation ũL � u � ũU may be taken to mean generating the individual
constraints of uL � u � uU and then removing those that are active at uk.
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JTk (u− uk) �
[
−δg
0

]
ũL � u � ũU

. (34)

Let Jk,1, ...,Jk,nJ represent the rows of JTk .
If no rows of Jk are negatively spanned by other rows of Jk:

@a2, ..., anJ ≥ 0 : Jk,1 = −a2Jk,2 − ...− anJJk,nJ , (35)

then there exists a vector δg � 0 for which Projection (33) has a solution.

Proof. We start by noting that the proof is trivial if there are no ε-active
constraints (i.e. any point in I will be a feasible point).

For the general case with multiple ε-active constraints, we use Theorem 1 to
state that the top set of inequalities in (34) is infeasible iff:

∃ν ∈ RnJ+ :

nJ∑
i=1

νiJk,i = 0, νT [−δg 0] < 0, (36)

which then implies:

Jk,1 = −ν2

ν1
Jk,2 − ...−

νnJ
ν1

Jk,nJ , (37)

i.e. that some row is negatively spanned by the others. It follows that the top
set of inequalities of (34) is feasible unless there is a negative spanning.

Let ū∗k+1 represent a solution to this set, with:

JTk (ū∗k+1 − uk) �
[
−δg
0

]
. (38)

We must now show that:

∃ū∗k+1 : ũL � ū∗k+1 � ũU , (39)

or that some solution of (38) will hold for the inactive constraints as well. This
may be restated as:

ũL � uk + (ū∗k+1 − uk) � ũU . (40)

Note, however, that scaling the right-hand side of (38) by a scalar α > 0
allows for the constraints to be satisfied:

JTk α(ū∗k+1 − uk) �
[
−αδg

0

]
, (41)

for an arbitrarily small α(ū∗k+1 − uk). This guarantees that a sufficiently small
choice of α will allow:

ũL � uk + α(ū∗k+1 − uk) � ũU , (42)

since ũL ≺ uk ≺ ũU , thereby completing the proof. �
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All in all, this particular result should be intuitive, as it basically excludes the
case where a descent direction for some of the constraints is an ascent direction
for another. As the most basic example of a case where Projection (33) would be
infeasible, consider two constraints, gp,1 and gp,2, with∇gp,1(uk) = −∇gp,2(uk).
This is a negative spanning and indeed matches the expected result – one cannot
go in a local descent direction for one without increasing the other.

Figure 5 serves to illustrate this point further. In the top example, we have
a simple linear case with three constraints. As their descent directions do not
negatively span one another (we see, in fact, that ∇gp,1(uk) and ∇gp,2(uk) span
∇gp,3(uk) positively), the projection problem is feasible (with the descent cone
of all feasible projections denoted by the lined region). In the bottom case, an
additional constraint, gp,4, is added, whose descent direction lies opposite to
that of the original three constraints and is spanned negatively by them. As
should be clear from the figure, this renders the descent cone empty – there is no
direction that will allow for all four constraints to be decreased simultaneously.
The projection is therefore infeasible in this case.

The cases where a negative spanning occurs are believed to be of little practi-
cal concern, as they represent those cases where either: (a) the choice of ε is too
large, or (b) the RTO problem is ill-posed to begin with. Both can be illustrated
by referring to the bottom case in Figure 5. For (a), we may assume that uk is
a point that is well within the feasible set, but, by an overly large choice of ε, we
have told the projection to locally decrease all of the constraints at once. As the
purpose of the projection is to avoid coming too close to the constraints that are
becoming active, it is clear that such a choice is poor and unnecessary, as none
of the constraints are close to active here. In this case, ε should be reduced to
make (33) feasible. For (b), suppose that ε ≈ 0. If so, then the feasible space in
Figure 5 is actually very, very small, with uk being squeezed tightly between all
four constraints, all of which are almost active – another way to visualize this
is to imagine the bottom figure in Figure 5 as having a very large zoom factor.
In this case, we are probably not interested in optimization anyway, since, as
would be the case with satisfying unknown equality constraints, just remaining
feasible is difficult enough. For these reasons, we state that Condition (29) may
be satisfied for the vast majority of practical cases, due to (33) always having a
solution in these cases provided a sufficiently low choice of ε and δg.

The choice of projection parameters ε and δg deserves a few words. Perhaps
the best way to present their respective roles would be by pointing out that
the choice of ε acts to identify the ε-active set (and thus the local descent cone
{u : JTk (u−uk) ≺ 0}), while δg decides just how deep into this cone one would
like to step.

Choosing an ε that is too large can have the following negative consequences:

• {u : JTk (u− uk) ≺ 0} = ∅, due to a negative spanning in JTk .

• Enforcing the algorithm to stay too far away from the constraints (a lo-
cal descent direction being enforced long before the constraint starts to
become active).
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Figure 5: An illustration of the cases where (33) is feasible (top) and infeasible (bottom) for
a linear-constraint case. The lined region represents the space of descent directions for all of
the constraints, but is empty in the bottom case due to a negative spanning between gp,4 and
the other three constraints.
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On the contrary, choosing ε to be too small will essentially cancel out the
effect of Condition (29), as this condition will not take effect until the corre-
sponding constraint is almost 0 (and Kk almost 0). Although Kk will still avoid
approaching 0 asymptotically, it may become so small that the practical differ-
ence between its actual positive value and 0 will be negligible. In looser terms,
this would mean “waiting too long” before enforcing a decrease in a given con-
straint value. The result in (30) reflects this analytically, where the lower bound
on Kk clearly goes to 0 as ε→ 0.

For δg, we remark that an arbitrarily large choice has no effect on the exis-
tence of a solution for JTk (u − uk) � −δg alone, as this is linked purely to the
non-negative spanning condition of the rows of JTk . However, as demonstrated
in the proof of Theorem 4, choosing δg to be too large would be equivalent to
scaling with a very large α, which may make satisfaction of the inactive box
constraints impossible. For a small choice it is clear that the feasibility of (33)
will be preserved, but, by contrast, performance issues may arise. As with ε,
we see, from a quick analytical examination of (30), that the lower bound on
Kk goes to 0 as δg → 0, thereby allowing for very small steps and very slow
progress.

A geometric illustration of the different choices of ε and δg for a linear-
constraint case is given in Figure 6. We conclude by proposing that a moderate
choice between the high and low extremes be used for both. However, as will be
shown in Section 4, such a choice may be automated once optimality guarantees
are included in the algorithm.

3.5. Illustrative Examples

The following RTO problem is considered:

maximize
u1,u2

u2

subject to gp,1(u) = u2
1 − 0.5u1 + u2 − 0.7 ≤ 0

gp,2(u) = 2u2
1 + 0.5u1 + u2 − 0.75 ≤ 0

u1 ∈ [−0.5, 0.5], u2 ∈ [0, 0.8]

, (43)

with an initial, feasible starting point of u0 = [−0.4, 0.1]. Here, we assume exact
knowledge of the nonstrict Lipschitz matrix (the component-wise maximum of
the absolute values in the Jacobian), K̃, over the relevant space I:

K̃ =

[
1.5 1
2.5 1

]
, (44)

which we then multiply by 1.1 to obtain the strict Lipschitz constants.
Three algorithms are applied:

Algorithm 1 – Fixed Target

By far the simplest, this “adaptation” involves providing u∗k+1 only once
by selecting the target value of [−0.2, 0.7] and keeping it there. Practically,
this may correspond to a case where the initial input u0 has been applied for
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Figure 6: An illustration of how the different choices of ε and δg affect the feasible space of
Projection (33) (denoted by the lined region). (a) Small ε and small δg – only gp,2 is deemed
ε-active and only its local descent direction is enforced, (b) large ε and small δg – both gp,1
and gp,2 are deemed ε-active, (c) small ε and large δg – only gp,2 is deemed ε-active and its
local descent direction is enforced with a shift of δg,2, (d) large ε and large δg – both gp,1 and
gp,2 are deemed ε-active and their descent directions are enforced with shifts of δg,1 and δg,2.
Note that the shifts δg are plotted conceptually – they are not, in general, the exact distances
by which a halfspace is shifted vertically/horizontally.

23



some time and has been deemed unsatisfactory, thus prompting a careful off-line
analysis to choose a better operating point. However, since we do not trust to
apply such an input change immediately, we would like to go there in steps,
making sure that feasibility is retained throughout.

Algorithm 2 – Projected Gradient Descent with Diminishing Step

Here, we adapt by taking steps along the gradient of the objective function:

u∗k+1 = uk −
1

k
∇φp(uk), (45)

where ∇φp(uk) = [0 − 1]T . A separate projection is applied following this step
for the cases when u∗k+1 falls outside of I.

Algorithm 3 – Initial Linear Model with Constraint Adaptation

A bit more involved, this algorithm employs a linear model of the constraints
that is identified once in the vicinity of the initial point:

g1(u) = −1.3u1 + u2 − 1.02

g2(u) = −1.1u1 + u2 − 1.39
. (46)

At each iteration, bias terms ε are defined as:

εk,j = gp,j(uk)− gj(uk), (47)

and the adaptation is then performed by solving the model-based optimization
with the bias correction terms added (Chachuat et al., 2008b):

u∗k+1 = arg maximize
u1,u2

u2

subject to g1(u) + εk,1 ≤ 0

g2(u) + εk,2 ≤ 0

u1 ∈ [−0.5, 0.5], u2 ∈ [0, 0.8]

. (48)

As nominal settings, we choose ε1 = ε2 = 0.02 and δg,1 = δg,2 = 0.1 for the
projection.

We consider Algorithm 1 first, presenting results for the cases where no
projection is done to keep a constraint from becoming active, and where this
projection is applied using both the nominal and perturbed ε and δg values
(Figure 7). Not enforcing Condition (29) leads to premature convergence, as
the iterates go in a straight line towards the target point until the constraint is
reached. When the projection is applied, the iterates approach the constraint
but are then diverted to keep the constraint from becoming active, and the
algorithm is able to reach (approximately) the closest feasible point to the target.
In some sense, applying (29) allows us to reach a projection of the target onto
the plant feasible space.

We see that varying the parameters ε and δg corresponds to the expectations
outlined in the previous subsection. Using smaller δg values clearly leads to
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weaker local descent – it is seen from comparing cases (b) and (c) that the
backing off from an ε-active constraint is not as aggressive. Case (d) illustrates
that choosing a larger ε leads to the constraint being backed off from earlier,
with the benefit of allowing larger iterate steps due to greater filter gains Kk.
However, we see that such a choice also leads to a persistently large back-off
that does not vanish.

The same cases are presented (in the same order) for Algorithms 2 and 3 in
Figures 8 and 9, respectively. The same patterns as were noted for Algorithm
1 are seen here as well – not applying the projection leads to convergence as
soon as a constraint is reached, while applying it leads to continuous movement
between iterations.

3.6. Summary

So as to guarantee hard constraint satisfaction of an RTO scheme at all iter-
ations, we have reviewed some of the standard approaches to satisfy uncertain
constraints. As many of these are either difficult to apply or suffer from a lack of
rigor, we chose to extend the theory of the adaptive input filter method (Bunin
et al., 2011) as we believe this to be a more realizable alternative. We then
proceeded to highlight the main algorithmic drawback of this approach, in that
it leads to premature convergence whenever one constraint becomes active and
approaches 0. So as to remedy this, we proposed a condition that would be
sufficient to keep the algorithm moving by projecting the target optimum onto
the strict local descent halfspace of any constraint that is approaching activity.
We then provided an algorithmic way of guaranteeing this condition via a pro-
jection, realized by solving a quadratic programming problem, which we then
showed to be feasible for a sufficiently small choice of projection parameters ε
and δg for the vast majority of practical cases. The effects of varying these
parameters were hypothesized and corroborated in simulation, where several
RTO algorithms were tried and showed the importance of having the additional
condition so as to avoid premature convergence.

In the next section, we go through a similar analysis for the cost function of
the RTO problem, thereby allowing us to derive conditions that, when coupled
with the feasibility conditions, form the full SCFO and may be used to enforce
convergence to a KKT point of the RTO problem via strictly feasible iterates.

4. Optimality Guarantees and the Full SCFO

We start this section by first defining “optimality” and then reviewing what
is available in terms of optimality guarantees for the different RTO algorithms
in the literature. Noting that these guarantees are algorithm-specific and rarely
account for feasibility guarantees (Section 3), we propose general sufficient con-
ditions that are algorithm-independent and preserve feasibility. As was done
in the previous section, we present the mathematical analysis first, stating the
sufficient conditions and proving how their presence guarantees optimality, and
then provide an algorithm for their enforcement. Conceptually, the approach is
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Figure 7: Feasible operation of Algorithm 1 with (a) no projection done, (b) projection with
nominal ε and δg values, (c) projection with nominal ε and δg,1 = δg,2 = 0.01, and (d)
projection with ε1 = ε2 = 0.1 and nominal δg . The blue dot represents the target optimum.
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Figure 8: Feasible operation of Algorithm 2.
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Figure 9: Feasible operation of Algorithm 3.
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very similar to the one taken in the previous section – we simply enforce that the
target optimum lie in the strict local descent halfspace of the objective function,
and that the steps taken in this direction are small enough so as not to lose the
descent (using, again, Lemma 3). We then finish by presenting a few examples
to demonstrate the effectiveness of the theory.

4.1. KKT Convergence and Existing Guarantees

By “optimality”, we simply mean KKT convergence, in that the algorithm
always converges to a KKT point, u∗, satisfying the necessary, first-order opti-
mality conditions:

Gp(u
∗) � 0, uL � u∗ � uU

µjgp,j(u
∗) = 0, ζLi (uLi − u∗i ) = 0, ζUi (u∗i − uUi ) = 0

∀j = 1, ..., ng,∀i = 1, ..., nu

∇L(u∗) = ∇φp(u∗) +

ng∑
j=1

µj∇gp,j(u∗)− ζL + ζU = 0

, (49)

with µ ∈ Rng+ and ζL, ζU ∈ Rnu+ vectors of Lagrange multipliers corresponding
to the uncertain and box constraints, respectively, and L(u) : Rnu → Rnu the
Lagrangian function that defines the KKT stationarity condition.

While this is not sufficient to guarantee that the KKT point is a local min-
imum (a second-order condition is also required), we limit ourselves to this
definition as the KKT points that are not local minima (e.g. local maxima and
saddle points) will not be algorithmically stable in any descent method. As the
conditions proposed in this work enforce a descent method, we will consider
(49) to be “practically sufficient” to guarantee local minimality, even though
we are unable to guarantee this rigorously – while conceptually possible, such
guarantees would require much stronger assumptions (knowledge of the plant
Hessian) that may be extremely difficult to uphold in practice.

In considering different RTO algorithms, one usually sees a clear distinction
between model-based and model-free methods with regard to KKT convergence
– the conditions for the latter are usually much simpler and easier to realize
(though the algorithms are slower and require more iterations), while the for-
mer, despite generally faster convergence, have conditions that require difficult
assumptions on the model used and the potential plant-model error. The guar-
antees available for the different approaches, as well as the price to pay for such
guarantees, are summarized as follows:

• The two-step parameter-identification-and-optimization approach, which
is the natural and standard approach to optimize many processes, has
very weak guarantees for converging to an actual KKT point of the plant
(Brdys & Tatjewski, 2005; Forbes et al., 1994; Marchetti, 2009; Quelhas
et al., 2013). In the general case, such convergence may only be guaranteed
if there exists a set of parameters for which the model has the same KKT
point as the plant (Biegler et al., 1985) and if such a set is identified by the
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parameter estimation method. When this is not the case, it is generally
accepted that the converged point of the model optimization will not be
a plant KKT point. In the rare case when structural uncertainty is not
present and all of the uncertainty is described by the parameters, the
convergence properties of the two-step approach are very simple – it is
sufficient to identify the correct parameters, to optimize the model once,
and to apply the result to the plant.

• Methods that employ measurements to correct the 0th- and 1st-order er-
ror of the model, known as ISOPE (Brdys & Tatjewski, 2005) or modifier
adaptation (Marchetti et al., 2009), are guaranteed to be at a KKT point
upon convergence, which is an attractive property but nevertheless requires
that the scheme converge. Local necessary conditions for convergence have
been detailed (Marchetti et al., 2009), but are difficult to implement as
they require the knowledge of the first and second derivatives of the plant
at the KKT point. Sufficient conditions for the case without uncertain in-
equality constraints are also available (Brdys & Tatjewski, 2005, Th. 4.1),
but depend on quantities that may not be easy to compute (i.e. the global
minimal eigenvalue of the model Hessian and its relation to the quadratic
upper bound of the plant) and assume convexity in the constraints that
are known. Sufficient conditions for the case with both uncertain cost and
constraints have been proposed (Chachuat et al., 2008a), but are largely
abstract and require multiple quadratic upper bounds that are linked to
the plant-model error, as well as certain continuity assumptions on the
model.

• Model-free methods such as the simplex, direct search, and gradient de-
scent come with simple guarantees of KKT convergence that rely almost
entirely on some sort of line search (Conn et al., 2009; Fletcher, 1987).
These are easy to implement as they need only continued experimentation
and sufficiently small steps, but have the obvious drawback of inefficiency
and slow convergence as they do not use a priori knowledge.

It is important to note that none of these guarantees, to the authors’ best
knowledge, take hard constraints into account. As such, while guaranteeing
convergence to a KKT point may be possible using the available theory for a
specific algorithm, doing so in the presence of hard constraints is not something
that has been addressed.

4.2. General Sufficient Conditions for Feasibility and Optimality

We begin by proposing a set of sufficient conditions for monotonic cost de-
crease in a general RTO algorithm.

Lemma 4. (Minimal Cost Decrease Between Iterations)
Let the following two conditions be satisfied at every iteration of the RTO

algorithm:
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∇φp(uk)T (u∗k+1 − uk) ≤ −δφ
0 < Kmin ≤ Kk ≤

−2
∇φp(uk)T (u∗k+1 − uk)

(u∗k+1 − uk)TQφ(u∗k+1 − uk)
−Kmin

, (50)

with δφ > 0, Qφ � 0 the quadratic upper bound of φp(u) as defined in Lemma
2, and Kmin > 0 some minimal value achieved by the adaptive filter gain Kk.6

Then, the change in the cost from iteration to iteration will be bounded as:

φp(uk+1)− φp(uk) ≤ −Kmin δφ+

K2
min

2
(uU − uL)TQφ(uU − uL) < 0

. (51)

Proof. Using Lemma 3, we know that the worst-case evolution (13), being
strictly convex with respect to Kk, achieves its maximum at either Kk = Kmin

or Kk = −2
∇φp(uk)T (u∗

k+1−uk)

(u∗
k+1−uk)TQφ(u∗

k+1−uk)
−Kmin and has a value strictly less than 0.

Substituting either of these bounds into the worst-case evolution expression
(13) for φp(uk+1)− φp(uk) yields:

φp(uk+1)− φp(uk) ≤ Kmin∇φp(uk)T (u∗k+1 − uk)+

K2
min

2
(u∗k+1 − uk)TQφ(u∗k+1 − uk)

, (52)

which, with the worst-case values of the linear and quadratic terms, leads to the
bound in (51). �

Conditions (50) are useful in that they give a guarantee of a minimal cost
decrease between two consecutive iterations. As the cost is, by assumption,
continuous over a compact domain and thereby bounded, it follows that meeting
such conditions indefinitely is not possible. The following gives a global upper
bound on the maximum number of iterations for which these conditions may be
met.

Corollary 1. (Upper Bound on Number of Cost-Decreasing, Feasible
Iterations)

Let φp,min = min(φp(u) : u ∈ I,Gp(u) � 0) and let the conditions of Lemma
4 hold whenever possible for some fixed δφ > 0, with all iterates satisfying the
hard inequality and box constraints. The number of iterations for which the
conditions of Lemma 4 are satisfied cannot exceed:

φp(u0)− φp,min

Kmin δφ −
K2
min

2
(uU − uL)TQφ(uU − uL)

<∞. (53)

6For (50) to be true, it is implicit that Kmin ≤ −
∇φp(uk)T (u∗

k+1−uk)

(u∗
k+1
−uk)

TQφ(u
∗
k+1
−uk)

.
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Proof. This results directly from Lemma 4. As φp(u0) − φp,min represents
the greatest possible suboptimality gap between the initial point and the global
minimum, the validity of Conditions (50) for more than this number of iterations
would reduce the cost below its global minimum, which is not possible without
losing feasibility. �

We now combine all of the results obtained so far to give the full SCFO.

Theorem 5. (Sufficient Conditions for Feasible-Side Convergence to
a KKT Point)

Let an RTO algorithm satisfy Conditions (21), (29), and (50) for all itera-
tions when it is possible to do so for some fixed choice of ε, δg, δφ � 0, and yield
uk+1 = uk otherwise. Defining the KKT error E as the minimal sum of squared
errors in the stationarity and complementary slackness conditions of (49):

E(u) = inf
µ,ζL,ζU�0

(
∇L(u)T∇L(u) +

ng∑
j=1

[µjgp,j(u)]
2

+

nu∑
i=1

[
(ζLi (uLi − ui))2 + (ζUi (ui − uUi ))2

] ) , (54)

it follows that such an algorithm will:

(i) Converge to a static point, u∞, in a finite number of iterations.

(ii) Satisfy the plant constraints at every iteration.

(iii) Decrease the cost at every iteration until u∞.

(iv) Have the KKT error at u∞ go to 0 in the limit with respect to ε, δg, and
δφ:

lim
ε,δg,δφ→0

E(u∞) = 0. (55)

Proof. We refer the reader to the appendix. �

Conditions (21), (29), and (50), together with u∗k+1 ∈ I, constitute the
full SCFO – guaranteeing finite-time convergence to a stationary point with
arbitrarily small KKT error as ε, δg, and δφ are made arbitrarily small. We
note that we cannot decouple optimality from feasibility, as we must have the
latter to guarantee the former. However, it may be shown that convergence via
infeasible iterates is also possible via an additional implementation technique –
this will be addressed in the companion work (Bunin et al., 2013b).

We give a geometrical illustration of the combined effect of Conditions (29)
and (50) in Figure 10 (as an extension of Figure 4), which allows for a much
simpler interpretation – by enforcing that the RTO algorithm always move in
a locally cost-decreasing and feasible direction, it is natural that it converge
when there no longer exists such a direction to move in (i.e. to the geometric
definition of a KKT point).
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Figure 10: The geometric interpretation of the SCFO for the earlier examples of Figure 4 with
a linear cost included. Here, the diagonally-lined regions represent the local descent halfspaces
for the constraints, while the horizontally-lined regions represent the local descent halfspaces
for the cost. The double-lined regions (cones) are therefore those that satisfy both Conditions
(29) and (50), with the arrows showing potential directions that may then be taken by the
RTO algorithm in accordance to the SCFO. It is not difficult to visualize that such a cone
will always exist unless the current iterate uk is already a KKT point.
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4.3. Basic Implementation

We propose a similar implementation as we did for the feasibility-only case,
and perform the following projection:

ū∗k+1 = arg minimize
u

∥∥u− u∗k+1

∥∥2

2

subject to ∇gp,j(uk)T (u− uk) ≤ −δg,j
∀j : gp,j(uk) ≥ −εj
∇φp(uk)T (u− uk) ≤ −δφ
uL � u � uU

, (56)

followed by applying (20) with respect to ū∗k+1, with the filter gain defined as:

Kk := min

{
min

j=1,...,ng

 −gp,j(uk)
nu∑
i=1

κji|ū∗k+1,i − uk,i|

 ,
−1.99

∇φp(uk)T (ū∗k+1 − uk)

(ū∗k+1 − uk)TQφ(ū∗k+1 − uk)

}
Kk > 1→ Kk := 1

, (57)

where we use 1.99 instead of 2 as an approximation of the inequality in (50).
As shown in Theorem 5, Problem (56) will have a solution for ε, δg, and δφ

sufficiently small unless uk is already a KKT point. As might be expected, and
as was already shown in both Figure 6 and the illustrative example in Section
3, the exact way in which the projection is done (i.e. the values of ε, δg, and
δφ) will influence the performance of the algorithm – we give an extension of
the previous geometric illustration, adding a linear cost, in Figure 11. It is not
clear what choices would lead to the best performance, but the following general
trends may be expected and have been observed:

• Small constant values of ε, δg, and δφ approximate the true SCFO well, i.e.
the ε-active constraints are close to the true active constraints, and Condi-
tions (29) and (50) are close to the strict local descent halfspace conditions
(the shifts seen in Cases (c) and (d) of Figure 11 are negligible). This leads
to “small” KKT error upon convergence as characterized analytically in
Theorem 5. However, the conditions may be enforced “too late”, with a
constraint becoming close to active, and the amount of local descent may
be small. This may result in very small values for Kk and therefore small
steps, causing the algorithm to progress very slowly, especially when close
to a constraint. The number of worst-case iterations as given by (53) also
grows accordingly, and the cost improvement guaranteed at each step, via
Lemma 4, lessens.

34



g p ,
1
(u
) =
0g

p , 2 (u) = 0

u
k

g p ,
1
(u
) =
0g

p , 2 (u) = 0

u
k

g p ,
1
(u
) =
0g

p , 2 (u) = 0

u
k

g p ,
1
(u
) =
0g

p , 2 (u) = 0

u
k

(a) (b)

(c) (d)

δ
g , 2 δ

g , 2δ
g , 1

cost decreasing

direction

δ
φ

δ
φ

∇g
p ,1
(u

k
)
T
(u − u

k
) = 0

∇g
p , 2
(u

k
)
T
(u − u

k
) = 0

∇g
p , 2
(u

k
)
T
(u − u

k
) = 0

∇g
p ,1
(u

k
)
T
(u − u

k
) = 0

∇g
p ,1
(u

k
)
T
(u − u

k
) = 0

∇g
p , 2
(u

k
)
T
(u − u

k
) = 0

∇g
p , 2
(u

k
)
T
(u − u

k
) = −δ

g , 2

∇g
p ,1
(u

k
)
T
(u − u

k
) = 0

∇g
p , 2
(u

k
)
T
(u − u

k
) = 0

∇g
p , 2
(u

k
)
T
(u − u

k
) = −δ

g , 2

∇g
p ,1
(u

k
)
T
(u − u

k
) = −δ

g ,1

∇φ
p
(u

k
)
T
(u − u

k
) = 0 ∇φ

p
(u

k
)
T
(u − u

k
) = 0

∇φ
p
(u

k
)
T
(u − u

k
) = 0∇φ

p
(u

k
)
T
(u − u

k
) = 0∇φ

p
(u

k
)
T
(u − u

k
) = −δ

φ
∇φ

p
(u

k
)
T
(u − u

k
) = −δ

φ

Figure 11: An illustration of how the different choices of ε, δg , and δφ affect the feasible space
of Projection (56) (shown via the lined regions). (a) Small ε and small δg , δφ, (b) large ε and
small δg , δφ, (c) small ε and large δg , δφ, (d) large ε and large δg , δφ. Note that the shifts
δg and δφ are plotted conceptually – they are not, in general, the exact distances by which a
halfspace is shifted vertically/horizontally.
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• Large constant values of ε, δg, and δφ have the opposite effect. A greater
ε-active set is chosen due to larger ε and thus the algorithm tries to stay
away from more constraints and tries to stay away from them earlier,
long before they become close to active. The amount of local descent in
both the cost and ε-active constraints is also greater, and so it should be
expected that the algorithm will aim for larger steps (this is seen clearly in
Case (d) of Figure 11). However, the SCFO are poorly approximated and
the worst-case KKT error upon convergence may be large. Clearly, large
ε, δg, and δφ all increase the chance of the conditions being impossible
to satisfy – for example, were δg and δφ increased further in Case (d)
of Figure 11, the projection would clearly become infeasible as the small
triangular feasible space would simply vanish.

As such, a sound approach would be to use larger values of ε, δg, and
δφ if possible, as this appears to lead to faster progress, and to use smaller
values otherwise to enforce true KKT convergence, which is guaranteed only as
ε, δg, δφ → 0. To this end, we propose the following method to auto-select and
auto-tune these parameters:

Initialization – Done Prior to RTO

1. The degrees of the different constraints’ activity, as well as the amount of
local descent in the constraints and cost, should be on a comparable scale.
A simple way to ensure this is by scaling the constraints and cost with
respect to their ranges (e.g. if min

u∈I
gp(u) = −100, the scaled constraint

may be re-defined as gp(u) := 0.01gp(u)).

Setting upper and lower limits on the projection parameters, let ε = δg =
1, δφ = 1, and choose ε, δg, and δφ sufficiently small (e.g. 10−6) so that
the approximation error of the active set by the ε-active set and of the
strict local descent conditions by the nonstrict inequality conditions, with
−δg and −δφ on the right-hand sides, is negligible.

Search for a Feasible Projection – Before Each RTO Iteration

2. Set ε := ε, δg := δg, and δφ := δφ.

3. Check the feasibility of (56) for the given choice of ε, δg, and δφ
7:

7As the arguably best way to verify the feasibility of (56) is to solve a linear programming
optimization problem, we write it in this form, with the “minimization of 0” used to denote
that no optimization actually takes place.
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minimize
u

0

subject to ∇gp,j(uk)T (u− uk) ≤ −δg,j
∀j : gp,j(uk) ≥ −εj
∇φp(uk)T (u− uk) ≤ −δφ
uL � u � uU

. (58)

If (58) does not have a solution, set ε := 0.5ε, δg := 0.5δg, δφ := 0.5δφ,
and attempt to re-solve (58). Otherwise, proceed to Step 4.

4. If ε � ε, δg � δg, or δφ ≥ δφ, solve (56) with ε, δg, and δφ. Else, terminate
(Step 5).

Termination – Declared Convergence to KKT Point

5. If ε ≺ ε, δg ≺ δg, and δφ < δφ, terminate, with ū∗k+1 := uk.

The basic philosophy of this method is in using larger values of ε, δg, and
δφ to both stay away from the constraints (large ε and δg) and to significantly
decrease the cost (large δφ) when possible. Once this becomes impossible due
to feasibility issues in (56), these parameters are lowered until (56) becomes
feasible. From Theorem 5, it is clear that infeasibility that persists even when
ε ≺ ε, δg ≺ δg, and δφ < δφ implies that convergence to a KKT point has been
achieved with very good accuracy, provided that ε, δg, and δφ are not too large.

We finish by remarking that the update laws of dividing ε, δg, and δφ by 2 in
Step 3 are purely heuristic. One could propose other, perhaps better performing,
rules, but such an optimization of the reduction law for ε, δg, and δφ (itself a
potential RTO problem) is outside the scope of the present work. As will be
seen in the next subsection, the proposed law gives satisfactory results for the
cases studied here.

4.4. Illustrative Examples

Consider the following RTO problem with one convex and two concave un-
certain constraints:

minimize
u1,u2

φp(u) = (u1 − 0.5)2 + (u2 − 0.4)2

subject to gp,1(u) = −6u2
1 − 3.5u1 + u2 − 0.6 ≤ 0

gp,2(u) = 2u2
1 + 0.5u1 + u2 − 0.75 ≤ 0

gp,3(u) = −u2
1 − (u2 − 0.15)2 + 0.01 ≤ 0

u1 ∈ [−0.5, 0.5], u2 ∈ [0, 0.8]

, (59)

for which the matrix of Lipschitz constants is defined as:

K = 1.1

 9.5 1
2.5 1
1 1.3

 , (60)
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and Qφ chosen as the Hessian of the (uncertain) cost function:

Qφ =

[
2 0
0 2

]
. (61)

A scaling of 4 : 2 : 1 : 1.5 is chosen for gp,1 : gp,2 : gp,3 : φp, while ε, δg, and
δφ are set to unity, and an approximation tolerance of 10−8 is used for ε, δg,
and δφ.

We note that the concave constraints serve a dual purpose. The first is
the general role of uncertain hard constraints, while the second has more to do
with their topological properties – it is particularly difficult for an algorithm
to remain feasible and avoid premature convergence while navigating around
constraints with concave properties (see, e.g., the example in Figure 3). Here,
we construct a rather nasty case so as to highlight the benefits that enforcing
the SCFO may bring to an algorithm – this corresponds to the cases where the
algorithms are initialized from u0 = [−0.5, 0.05]. To be more – or, perhaps, less
– realistic, we also consider a nicer case with the initial point u0 = [0, 0.4] where
these constraints do not really play a role. We also note that their presence
does not change the fact that this problem only has a single stable KKT point
at u∗ = [0.35, 0.32], which is, in this case, the global minimum. An unstable
KKT point at u = [−0.09, 0.11] is also present, however.

As all three constraints are defined as hard constraints, we apply the filter
gain criterion (21) so as to ensure that the constraints are never violated. We
also look at the cases where only Condition (29) is applied, as was done in
Section 3. For these schemes, we do not auto-tune ε and δg, simply setting
them to ε := 0.01ε and δg := 0.01δg.

Five different RTO algorithms are considered, of which only two are reported
here in the interest of space, with the results for the remaining three relegated
to the Supplementary Material. We describe the two algorithms reported here
below:

Algorithm 1 – Two-Step Approach

A model of the plant, with a set of uncertain parameters θ, is available:

φ(u,θ) = θ1(u1 − 0.3)2 + θ2(u2 − 0.3)2

g1(u,θ) = −θ3u
2
1 − 3.5u1 + u2

2 − 0.6 ≤ 0

g2(u,θ) = θ4u1 + u2 + θ5 ≤ 0

g3(u,θ) = −u2
1 − (u2 − 0.15)2 + 0.01 ≤ 0

, (62)

where we allow the third constraint to be modeled perfectly.
The parameters are re-estimated at each iteration (via linear regression) and

the updated model is optimized numerically to compute u∗k+1. This represents
a relatively good model-based RTO algorithm that nevertheless fails to achieve
KKT convergence due to structural mismatch between the parametric model
and the plant.

Algorithm 2 – Random Step
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Here, we draw the u∗k+1 out of a hat, using a uniform random number
generator to provide an input such that u∗k+1,1 ∼ U [−0.5, 0.5], u∗k+1,2 ∼ U [0, 0.8].
While highly impractical and not at all advised, we use this method to underline
the usefulness that enforcing the SCFO has, even when the RTO algorithm is
completely haphazard.

Figures 12-13 provide the results. Leaving the algorithm-related remarks to
the figure captions, we proceed to outline the noticeable general trends below:

• Feasibility is indeed preserved due to (21) for all cases.

• Premature convergence to one of the concave constraints is noted for all
algorithms unless Condition (29) is enforced, in which case the iterates
are able to “slide” around these obstacles.

• Enforcing the SCFO leads to feasible convergence to the optimum in ev-
ery case. This holds even when the algorithm is completely haphazard
(Algorithm 2).

• The SCFO always avoid the unstable KKT point at u = [−0.09, 0.11].

• Enforcing Condition (29) alone proves sufficient for certain algorithms
(See Algorithms A1, A2, and A3 in the Supplementary Material) to reach
a region very close to the optimum. However, the lack of an auto-tuning
scheme for the projection parameters keeps these realizations oscillating
with an offset.

• The steps are significantly smaller and progress significantly slower when
the algorithm is close to a constraint. This is due to the numerator of
Condition (21).

• Enforcing the SCFO for cases where the algorithm converges without them
does affect performance slightly, in that more care is given with respect
to the constraints, which affects the convergence trajectory (see examples
in the Supplementary Material).

• The choice of algorithm does not appear to be crucial when the SCFO are
enforced, but does affect performance. For the case with the second initial
point, for example, one may see that Algorithm 2 has reduced performance
when compared to the others, due to its somewhat erratic trajectory.

• Enforcing Condition (50) does indeed lead to monotonic improvement in
the cost function.

4.5. Summary

The problem of convergence to a KKT optimum has been defined and the
extents to which various RTO algorithm classes could guarantee this property
have been reviewed, with the SCFO being proposed as a general set of conditions
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Figure 12: Performance of Algorithm 1 (two step) for the cases where (1) neither Conditions
(29) nor (50) are enforced, (2) only Condition (29) is enforced, (3) the full SCFO are enforced,
for (a) the first initial point and (b) the second initial point. Contours of the cost are given in
black, with the optimal plant cost given by the dotted black lines in the right-hand figures. The
plant optimum is plotted in green. We note that the SCFO are needed to enforce convergence
to the optimum due to structural errors in the parametric model.
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Figure 13: Performance of Algorithm 2 (random step) for the six cases. Not surprisingly, the
algorithm does almost nothing desirable unless the SCFO are enforced.
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to force this property for any algorithm – taking the feasibility conditions of the
previous section and adding to them the requirement that the cost be locally
decreasing at every iteration and that an additional constraint on the filter gain
be satisfied to guarantee that the cost decrease for each step of the algorithm.
Using Theorem 1, we showed that any algorithm meeting the SCFO would
continue to decrease the cost until it became impossible to do so for a sufficiently
low choice of projection parameters, which could only occur at a (practically
stable) KKT point. This was demonstrated using several challenging examples.

5. Conclusions

The goal of the present paper has been to propose a set of sufficient condi-
tions for convergence, via feasible iterates, to a plant KKT point in the context
of the generalized RTO algorithm, and may be summarized via Figure 14 (as
an extension of the structure in Figure 1). Sections 3 and 4 have presented the
necessary theory with respect to feasibility and optimality, respectively, with the
latter subsuming the former to comprise the full SCFO set. Testing the SCFO
in simulation gave excellent performance, and showed that we could achieve
convergence even for cases where the feasible set had unfavorable topological
properties that made it impossible for most algorithms to get around unless the
SCFO were applied.

It would be fair to note that, at least from a mathematical point of view, the
proposed conditions are not terribly surprising, or even novel, in their structure
– simply put, they restate the somewhat natural fact that local derivative infor-
mation, when coupled with higher-order global bounds, allow us to manipulate
any optimization algorithm to force it to converge to a KKT point regardless
of its innate structure. This sort of idea cannot possibly be new in the context
of numerical optimization. However, we believe that the work in this paper
constitutes an important contribution to the RTO field, where the numerous
challenges, as outlined in the introduction, have led to the creation of many
methods but no general set of guarantees. It is hoped that the SCFO can fill an
important gap by providing a theoretical foundation to guide the development
and operation of future (and current) RTO algorithms.

Another point worth noting is how the ad hoc nature of the different al-
gorithms is significantly reduced when placed into this framework. As we see
from the proposed projection steps, the RTO algorithm still plays a role (by
calculating the initial u∗k+1) in determining the general direction for the iterates
to follow. As such, we naturally expect better, more accurate algorithms to get
us to the optimum quicker, and are able to confirm these expectations in the
simulated trials of Section 4. However, it is also important to note that the
actual choice of algorithm is no longer crucial and is merely a preference – when
the SCFO are enforced, feasible-side convergence to a KKT point is ensured
regardless. We believe that this has the potential to remove a considerable bur-
den from the practitioner, as no “optimal” algorithm exists and several valid
approaches could be proposed depending on the specific problem at hand.
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Perhaps the immediate question introduced in this work is the following:
should these conditions actually be enforced in practice as suggested in Figure
14? The short and immediate answer is that they probably should, as with
a relatively compact set of assumptions they allow for very strong and useful
guarantees, as well as for a general foundation for RTO analysis. A longer
answer might involve the study of the impact of the employed projection on
the convergence rate of an algorithm, as it is more than likely that there exist
problems for which such a projection actually makes convergence slower. In
these latter cases, it may be better to let the algorithm operate as it would
normally, and then enforce the SCFO only if it fails to perform as desired. We
have not attempted to carry out such a study here.

The other question – one of pressing importance and the subject of the
companion paper – is whether or not it is possible to actually enforce these
conditions for a real system, as they depend on the knowledge of exact local
derivatives, global upper bounds, and noise-free measurements, none of which
is generally known in application. It will be argued in the second paper that,
while the SCFO cannot be applied as easily as they were here when the knowl-
edge assumptions were made, they can still be robustly enforced for a number
of practical realizations, and that doing so will generally lead to superior per-
formance.
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Appendix

Proof of Lemma 2

We prove the lemma by considering the inequality along the line segment
between an arbitrary pair uk,uk+1 ∈ I. The following one-dimensional param-
eterization is used:

fu(γ) = f(u(γ)), (63)

with u(γ) = uk + γ(uk+1 − uk), γ ∈ [0, 1]. As f is twice continuously differ-
entiable, it follows that fu is as well, which allows us to use the Taylor series
expansion between γ = 0 and γ = 1, together with the mean-value theorem, to
state (Korn & Korn, 2000, Section 4.10-4):

fu(1) = fu(0) +
dfu

dγ

∣∣∣
γ=0

+R1(1, 0)

R1(1, 0) =
1

2

d2fu

dγ2

∣∣∣
γ=γ̃

, (64)

for some γ̃ ∈ (0, 1). We proceed to define the first- and second-order derivatives
in terms of the original function f . To do this we apply the chain rule:

dfu

dγ

∣∣∣
γ

=

nu∑
i=1

∂f

∂ui

∣∣∣
u(γ)

dui
dγ

∣∣∣
γ

= ∇f(u(γ))T (uk+1 − uk), (65)

and then differentiate once more with respect to γ:

d2fu

dγ2

∣∣∣
γ

=

nu∑
i=1

d

dγ

(
∂f

∂ui

∣∣∣
u(γ)

dui
dγ

∣∣∣
γ

)
=

nu∑
i=1

d

dγ

(
∂f

∂ui

∣∣∣
u(γ)

)
dui
dγ

∣∣∣
γ
, (66)

where we have ignored the terms corresponding to d2ui/dγ
2 as all such terms

are 0. Applying the chain rule again yields:

d2fu

dγ2

∣∣∣
γ

=

nu∑
i=1

nu∑
j=1

∂2f

∂ui∂uj

∣∣∣
u(γ)

duj
dγ

∣∣∣
γ

dui
dγ

∣∣∣
γ

=

nu∑
i=1

nu∑
j=1

∂2f

∂ui∂uj

∣∣∣
u(γ)

(uk+1,i − uk,i)(uk+1,j − uk,j)
. (67)

Substituting the results of (65) and (67) into (64), and noting that fu(0) =
f(uk) and fu(1) = f(uk+1), leads to:

f(uk+1) = f(uk) +∇f(uk)T (uk+1 − uk) +R1(1, 0)

R1(1, 0) =
1

2

nu∑
i=1

nu∑
j=1

∂2f

∂ui∂uj

∣∣∣
u(γ̃)

(uk+1,i − uk,i)(uk+1,j − uk,j)
. (68)
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We complete the proof by deriving an upper bound on the remainder term.
First, note that (by ab ≤ |a||b|):

∂2f

∂ui∂uj

∣∣∣
u(γ̃)

(uk+1,i − uk,i)(uk+1,j − uk,j)

≤

∣∣∣∣∣ ∂2f

∂ui∂uj

∣∣∣
u(γ̃)

∣∣∣∣∣∣∣∣(uk+1,i − uk,i)(uk+1,j − uk,j)
∣∣∣ . (69)

From the positivity of a quadratic (i.e. 0 ≤ a2± 2ab+ b2 ⇒ 2|ab| ≤ a2 + b2),
we have: ∣∣∣(uk+1,i − uk,i)(uk+1,j − uk,j)

∣∣∣
≤ 1

2
(uk+1,i − uk,i)2 +

1

2
(uk+1,j − uk,j)2

, (70)

from which it follows that:

∂2f

∂ui∂uj

∣∣∣
u(γ̃)

(uk+1,i − uk,i)(uk+1,j − uk,j)

≤ 1

2

∣∣∣∣∣ ∂2f

∂ui∂uj

∣∣∣
u(γ̃)

∣∣∣∣∣ [(uk+1,i − uk,i)2 + (uk+1,j − uk,j)2
] . (71)

Substituting this into (68) then yields the following bound on the remainder:

R1(1, 0) ≤ 1

4

nu∑
i=1

nu∑
j=1

∣∣∣∣∣ ∂2f

∂ui∂uj

∣∣∣
u(γ̃)

∣∣∣∣∣(uk+1,i − uk,i)2

+
1

4

nu∑
i=1

nu∑
j=1

∣∣∣∣∣ ∂2f

∂ui∂uj

∣∣∣
u(γ̃)

∣∣∣∣∣(uk+1,j − uk,j)2

. (72)

By Clairaut’s theorem, we have that:

∂2f

∂ui∂uj

∣∣∣
u(γ̃)

=
∂2f

∂uj∂ui

∣∣∣
u(γ̃)

, (73)

which, together with the interchangeability of the order of summation (Korn &
Korn, 2000, Section 4.8-3), allows us to rewrite the second term on the right-
hand side of (72) as:

1

4

nu∑
j=1

nu∑
i=1

∣∣∣∣∣ ∂2f

∂uj∂ui

∣∣∣
u(γ̃)

∣∣∣∣∣(uk+1,j − uk,j)2, (74)

which is clearly equivalent to the first term (only the choice of indices differs).
This allows us to combine the two to obtain:

R1(1, 0) ≤ 1

2

nu∑
i=1

nu∑
j=1

∣∣∣∣∣ ∂2f

∂ui∂uj

∣∣∣
u(γ̃)

∣∣∣∣∣(uk+1,i − uk,i)2. (75)
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To make this bound global for any choice of uk,uk+1 ∈ I and all γ̃ ∈ (0, 1),
we use (8), which implies:∣∣∣∣∣ ∂2f

∂ui∂uj

∣∣∣
u

∣∣∣∣∣ < Mij , ∀u ∈ I. (76)

This globally bounds the remainder as:

R1(1, 0) ≤ 1

2

nu∑
i=1

nu∑
j=1

Mij(uk+1,i − uk,i)2, (77)

or, in vector notation, as:

R1(1, 0) ≤ 1

2
(uk+1 − uk)TQ(uk+1 − uk), (78)

with Q a diagonal matrix with the diagonal elements defined as in (10). Sub-
stituting (78) into (68) and rearranging leads to the main result. �

Proof of Theorem 3

We first obtain a more global version of (21) that is independent of the RTO
algorithm by remarking that:

nu∑
i=1

κji|u∗k+1,i − uk,i| ≤ κTj
(
uU − uL

)
, ∀j = 1, ..., ng, (79)

which allows us to lower bound Kk as:

0 < min
j=1,...,ng

[
−gp,j(uk)

κTj (uU − uL)

]
≤ min
j=1,...,ng

 −gp,j(uk)
nu∑
i=1

κji|u∗k+1,i − uk,i|

 = Kk. (80)

This then leaves us with the simpler task of lower bounding Kk by lower bound-
ing −gp,j(uk), since κTj (uU − uL) is independent of iteration.

We proceed by stating that −gp,j(uk) may be lower bounded differently
depending on its value. Specifically, we break the full set of possibilities into
the following subcases:

1. −gp,j(uk) > εj

2. −gp,j(uk) ≤ εj

(a) −gp,j(uk) ≥ Kε,jδg,j
γκ

(b) −gp,j(uk) <
Kε,jδg,j
γκ
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where we will refer to the three subcases as Case 1, Case 2a, and Case 2b. We
will now derive the lowest values that −gp,j can achieve for each of these three
scenarios.

For Case 1, we start by noting that, from the definition of γκ in (28), we
have that:

κ̃ji ≤ γκκji, ∀i = 1, ..., nu, j = 1, ..., ng, (81)

with γκ ∈ (0, 1) implicit from the strictness of κ and the fact that all of the κ̃
cannot be null simultaneously (each constraint being a function of the inputs
and not simply a constant value). We now follow the same steps as in Lemma
1 and Theorem 2, this time for the case with the nonstrict Lipschitz constants,
to obtain:

gp,j(uk+1) ≤ gp,j(uk) +

nu∑
i=1

κ̃ji|uk+1,i − uk,i|

⇒ gp,j(uk+1) ≤ gp,j(uk) + γκ

nu∑
i=1

κji|uk+1,i − uk,i|
. (82)

Since

gp,j(uk) +

nu∑
i=1

κji|uk+1,i − uk,i| ≤ 0

⇔
nu∑
i=1

κji|uk+1,i − uk,i| ≤ −gp,j(uk)

(83)

is enforced by (21) at all iterations, it follows that:

gp,j(uk+1) ≤ gp,j(uk)− γκgp,j(uk) = (1− γκ)gp,j(uk)

⇔ −gp,j(uk+1) ≥ (1− γκ)(−gp,j(uk))
. (84)

It is evident that the lowest value that−gp,j(uk+1) can achieve while−gp,j(uk) >
εj is:

−gp,j(uk+1) > (1− γκ)εj , (85)

after which Case 1 would no longer be pertinent and we would shift our analysis
to Cases 2a and 2b.

For these cases, we employ the result of Lemma 3, which states that:

0 < Kk < −2
∇gp,j(uk)T (u∗k+1 − uk)

(u∗k+1 − uk)TQj(u
∗
k+1 − uk)

⇒ −gp,j(uk+1) > −gp,j(uk). (86)

Using Condition (29), together with the fact that Qj � 0, allows:

Kε,j ≤ −2
∇gp,j(uk)T (u∗k+1 − uk)

(u∗k+1 − uk)TQj(u
∗
k+1 − uk)

, (87)
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as (31) represents the minimal value that the right-hand side could possibly
take for any iteration where gp,j is ε-active – this is done by maximizing the
(negative) numerator and maximizing the (positive) denominator. This allows
us to make (86) independent of the RTO algorithm and to state:

Kk < Kε,j ⇒ −gp,j(uk+1) > −gp,j(uk). (88)

Using (80), we may extend this statement further:

min
ĵ=1,...,ng

 −gp,ĵ(uk)
nu∑
i=1

κĵi|u
∗
k+1,i − uk,i|

 < Kε,j ⇒ −gp,j(uk+1) > −gp,j(uk), (89)

where we make a temporary change of indices so as to distinguish between
the terms in the minimum operator (indexed by ĵ) from the single constraint
whose evolution is being considered (indexed by j). However, since satisfying
the inequality for any arbitrary j also satisfies it for the minimum:

−gp,j(uk)
nu∑
i=1

κji|u∗k+1,i − uk,i|
< Kε,j ⇒ min

ĵ=1,...,ng

 −gp,ĵ(uk)
nu∑
i=1

κĵi|u
∗
k+1,i − uk,i|

 < Kε,j , (90)

we may simplify (89) to:

−gp,j(uk)
nu∑
i=1

κji|u∗k+1,i − uk,i|
< Kε,j ⇒ −gp,j(uk+1) > −gp,j(uk). (91)

In order to make this statement independent of the RTO algorithm, we
exploit the ε-activity of gp,j and rewrite the condition in (29) as:

∇gp,j(uk)T (uk − u∗k+1) =

nu∑
i=1

∂gp,j
∂ui

∣∣∣
uk

(
uk,i − u∗k+1,i

)
≥ δg,j , (92)

from which it readily follows that:

nu∑
i=1

κ̃ji|u∗k+1,i − uk,i| ≥
nu∑
i=1

∂gp,j
∂ui

∣∣∣
uk

(
uk,i − u∗k+1,i

)
≥ δg,j

⇒ γκ

nu∑
i=1

κji|u∗k+1,i − uk,i| ≥ δg,j ⇔
nu∑
i=1

κji|u∗k+1,i − uk,i| ≥
δg,j
γκ

, (93)
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thereby allowing us to further chain the implication of (90):

−γκgp,j(uk)

δg,j
< Kε,j ⇒

−gp,j(uk)
nu∑
i=1

κji|u∗k+1,i − uk,i|
< Kε,j , (94)

to obtain:

−γκgp,j(uk)

δg,j
< Kε,j ⇒ −gp,j(uk+1) > −gp,j(uk)

⇔ −gp,j(uk) <
Kε,jδg,j
γκ

⇒ −gp,j(uk+1) > −gp,j(uk)
. (95)

We are now equipped to make statements about Cases 2a and 2b. Note first
that Case 2a may not exist – this occurs if

εj <
Kε,jδg,j
γκ

, (96)

since Case 1 would remain dominant. If this is so, then only Case 1 and Case
2b need consideration. Assuming that Case 2a can occur, it follows that we can
exploit the bound in (84) to calculate the lowest value that −gp,j(uk+1) can

achieve while −gp,j(uk) >
Kε,jδg,j
γκ

:

−gp,j(uk+1) > (1− γκ)
Kε,jδg,j
γκ

, (97)

after which we would shift to Case 2b.
In this final scenario, we have, by (95), that the value cannot decrease and

that −gp,j(uk+1) > −gp,j(uk). It thus only remains to lower bound −gp,j(uk)
in this bound to obtain the ultimate lower bound on −gp,j for all iterations. To
do this, one needs to analyze how one can arrive at Case 2b. The first means
is directly from Case 1, in which case we may shift the indices (by applying
k := k + 1) and note that:

−gp,j(uk) > (1− γκ)εj . (98)

The second means is to go to Case 2b from Case 2a, where, using the same
logic, we have:

−gp,j(uk) > (1− γκ)
Kε,jδg,j
γκ

. (99)

Finally, there is also the possibility that the RTO algorithm is initialized

directly in Case 2b, with −gp,j(u0) <
Kε,jδg,j
γκ

. In this case, we have:

−gp,j(uk) > −gp,j(u0). (100)
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To account for all of these possibilities, which are comprehensive and account
for all that could occur, we may proceed to obtain the global lower bound on
−gp,j by taking the minimum of the three:

−gp,j(uk) > min

(
(1− γκ)εj , (1− γκ)

Kε,jδg,j
γκ

,−gp,j(u0)

)
. (101)

This allows us to restate (80) as:

0 < min
j=1,...,ng

min

(
(1− γκ)εj , (1− γκ)

Kε,jδg,j
γκ

,−gp,j(u0)

)
κTj (uU − uL)


< min
j=1,...,ng

[
−gp,j(uk)

κTj (uU − uL)

]
≤ Kk

, (102)

which proves the desired result. �

Proof of Theorem 5

(i) (21) and (29) guarantee the existence of Kmin > 0, by Theorem 3, which
in turn allows the application of (50) and the guarantee that the conditions
may only be satisfied for a finite number of iterations, as upper bounded in
(53). As the algorithm is entirely deterministic, it follows that the inputs
remain at u∞ indefinitely following the first instance where the conditions
can no longer be satisfied.

(ii) Feasibility follows from (21).

(iii) Monotonic cost improvement until u∞ follows from (50).

(iv) We must characterize the point u∞ where the three sets of Conditions
(21), (29), and (50) cannot be satisfied. First, we drop the conditions on
the filter gain (Condition (21) and the second condition in (50)) from the
discussion, noting that these can always be satisfied for Kk = Kmin and
are not a concern. We thus turn to the inequality constraints of Conditions
(29) and (50), as well as to the box constraints. Using the same notation
as in Theorem 4, these may be rewritten as:

[
∇φp(u∞)T

JT∞

]
(u− u∞) �

 −δφ−δg
0


ũL � u � ũU

. (103)

Equivalently, we may consider the scaled version:
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[
∇φp(u∞)T

JT∞

]
α(u− u∞) �

 −αδφ−αδg
0


ũL � u∞ + α(u− u∞) � ũU

. (104)

Since ũL ≺ u∞ ≺ ũU , it follows that there exists a choice αL > 0, for any
u, so that the inactive box constraints will be satisfied. Since α → 0 ⇒
αδg, αδφ → 0, it follows that there exist small enough δLg = αLδg � 0

and δLφ = αLδφ > 0 so that the inactive box constraints may be satisfied
in the limit for this choice of δg and δφ. We have therefore proven that
the inactive box constraints cannot cause infeasibility in the conditions as
δg, δφ → 0, and proceed to consider the infeasibility of the simpler case:

[
∇φp(u∞)T

JT∞

]
αL(u− u∞) �

 −δLφ−δLg
0

 , (105)

which is equivalent with respect to feasibility to the original unscaled set:

[
∇φp(u∞)T

JT∞

]
(u− u∞) �

 −δφ−δg
0

 . (106)

We analyze the infeasibility of this set as ε → 0. From Theorem 1, we
know that the system in (106) is infeasible iff:

aφ∇φp(u∞) + a1J∞,1 + ...+ anJJ∞,nJ = 0, (107)

with at least one a coefficient corresponding to either the cost or the un-
certain constraints strictly positive.

Since (107) must be true at u∞ for 0 ≺ δg � δLg , 0 < δφ ≤ δLφ , we proceed
to analyze the several cases that satisfy (107). The first corresponds to
the occurrence of a trivial negative spanning where one of the elements in
the summation is 0. This may occur with either the cost or the uncertain
constraints, as the box constraints cannot have a zero gradient. If this is
true for the cost, with ∇φp(u∞) = 0, then the KKT conditions for an
unconstrained KKT point are satisfied and the KKT error is 0. For the
constraints, we have, from Assumption A3, that there exists εm,j > 0 for
every uncertain constraint gp,j so that the gradient ∇gp,j(u∞) cannot be
0 as ε→ 0.

We consider the cases of nontrivial negative spanning next, where at least
two of the a coefficients are strictly positive. There are two cases of interest
– one where aφ = 0 (the cost descent condition does not contribute to
infeasibility) and one where aφ > 0 (the cost does contribute). Suppose
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first that aφ = 0 as ε → 0. If this is true, then the relevant constraint
gradients span each other negatively even as the ε-active set becomes an
arbitrarily good approximation of the true active set. This, in turn, means
that there is no direction that locally decreases all of these constraints, i.e.
a locally feasible direction. This then implies that u∞ is a singleton in
the set defined by the active constraints, thereby allowing us to ignore
this case. As stated before, such problems are ill-posed and do not require
RTO. We are therefore left with the case of aφ > 0 for a sufficiently small
εL � 0 (we need εL to be small enough so as to ensure that there is no
negative spanning between the ε-active constraints).

We now proceed to derive an upper bound on the KKT error that is valid
for 0 ≺ ε � εL, 0 ≺ δg � δLg , and 0 < δφ ≤ δLφ and show how it must tend
to 0 as ε→ 0.

For this case, we may, without loss of generality, scale to set aφ = 1 and,
changing the notation on the coefficients, write (107) in a form that is
analogous to that of the Lagrangian in (49):

∇L̃(u∞) = ∇φp(u∞) +

ng∑
j=1

µ̃j∇gp,j(u∞)− ζ̃
L

+ ζ̃
U

= 0, (108)

with µ̃j = 0, ∀j : gp,j(u∞) < −εj , ζ̃Ui = 0, ∀i : u∞,i < uUi , ζ̃Li = 0, ∀i :
u∞,i > uLi establishing equivalence with (107).

Using (108), we may express the gradient of the true Lagrangian as:

∇L(u∞) = ∇L(u∞)−∇L̃(u∞) =
ng∑
j=1

(µj − µ̃j)∇gp,j(u∞)− (ζL − ζ̃
L

) + (ζU − ζ̃
U

)
. (109)

Noting that ∇L(u∞) = 0 for the choice µ = µ̃, ζL = ζ̃
L

, ζU = ζ̃
U

, we
upper bound the KKT error as follows:
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inf
µ,ζL,ζU�0

(
∇L(u∞)T∇L(u∞) +

ng∑
j=1

[µjgp,j(u∞)]
2

+

nu∑
i=1

[
(ζLi (uLi − u∞,i))2 + (ζUi (u∞,i − uUi ))2

] )
≤ inf

µ=µ̃,ζL=ζ̃
L
,ζU=ζ̃

U

(
∇L(u∞)T∇L(u∞) +

ng∑
j=1

[µjgp,j(u∞)]
2

+

nu∑
i=1

[
(ζLi (uLi − u∞,i))2 + (ζUi (u∞,i − uUi ))2

] )
=

ng∑
j=1

[µ̃jgp,j(u∞)]
2

+

nu∑
i=1

[
(ζ̃Li (uLi − u∞,i))2 + (ζ̃Ui (u∞,i − uUi ))2

]
=

ng∑
j=1

[µ̃jgp,j(u∞)]
2 ≤

ng∑
j=1

(µ̃jεj)
2

, (110)

where the steps may be justified as follows:

• Setting the Lagrange multipliers equal to their (̃·) analogues leads to
taking an infimum over a set with tighter constraints, which cannot
lower the value of the infimum.

• The infimum may be evaluated by substituting in the (̃·) values and
noting that the gradient of the Lagrangian is 0 for this choice, leaving
only the complementary slackness terms.

• All of the terms corresponding to the box constraints may be removed
since the constraints are either active with a value of 0 or have ζ̃
coefficients equal to 0 by definition.

• As all of the ε-active constraints must have values that are smaller,
in absolute value, than the corresponding ε values, the bound may
be restated further in terms of ε (the ε-inactive constraints have cor-
responding µ̃ values of 0 by definition).

Clearly, this upper bound approaches 0 as ε→ 0 provided that the relevant
µ̃j are finite for any realization of the algorithm. This is guaranteed by the
finite nature of (108), which may only have infinite coefficients for those
uncertain constraints with a zero gradient. However, this has already been
ruled out by Assumption A3 as ε → 0. Since the upper bound in (110)
tends to 0, it follows that the error in (54) does as well, thereby proving
(55). �
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