10,756 research outputs found

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table

    Ozone: Efficient Execution with Zero Timing Leakage for Modern Microarchitectures

    Full text link
    Time variation during program execution can leak sensitive information. Time variations due to program control flow and hardware resource contention have been used to steal encryption keys in cipher implementations such as AES and RSA. A number of approaches to mitigate timing-based side-channel attacks have been proposed including cache partitioning, control-flow obfuscation and injecting timing noise into the outputs of code. While these techniques make timing-based side-channel attacks more difficult, they do not eliminate the risks. Prior techniques are either too specific or too expensive, and all leave remnants of the original timing side channel for later attackers to attempt to exploit. In this work, we show that the state-of-the-art techniques in timing side-channel protection, which limit timing leakage but do not eliminate it, still have significant vulnerabilities to timing-based side-channel attacks. To provide a means for total protection from timing-based side-channel attacks, we develop Ozone, the first zero timing leakage execution resource for a modern microarchitecture. Code in Ozone execute under a special hardware thread that gains exclusive access to a single core's resources for a fixed (and limited) number of cycles during which it cannot be interrupted. Memory access under Ozone thread execution is limited to a fixed size uncached scratchpad memory, and all Ozone threads begin execution with a known fixed microarchitectural state. We evaluate Ozone using a number of security sensitive kernels that have previously been targets of timing side-channel attacks, and show that Ozone eliminates timing leakage with minimal performance overhead

    A Secure Cooperative Sensing Protocol for Cognitive Radio Networks

    Get PDF
    Cognitive radio networks sense spectrum occupancy and manage themselves to operate in unused bands without disturbing licensed users. Spectrum sensing is more accurate if jointly performed by several reliable nodes. Even though cooperative sensing is an active area of research, the secure authentication of local sensing reports remains unsolved, thus empowering false results. This paper presents a distributed protocol based on digital signatures and hash functions, and an analysis of its security features. The system allows determining a final sensing decision from multiple sources in a quick and secure way.Las redes de radio cognitiva detectora de espectro se las arreglan para operar en las nuevas bandas sin molestar a los usuarios con licencia. La detección de espectro es más precisa si el conjunto está realizado por varios nodos fiables. Aunque la detección cooperativa es un área activa de investigación, la autenticación segura de informes locales de detección no ha sido resuelta, por lo tanto se pueden dar resultados falsos. Este trabajo presenta un protocolo distribuido basado en firmas digitales y en funciones hash, y un análisis de sus características de seguridad. El sistema permite determinar una decisión final de detección de múltiples fuentes de una manera rápida y segura.Les xarxes de ràdio cognitiva detectora d'espectre se les arreglen per operar en les noves bandes sense destorbar els usuaris amb llicència. La detecció d'espectre és més precisa si el conjunt està realitzat per diversos nodes fiables. Encara que la detecció cooperativa és una àrea activa d'investigació, l'autenticació segura d'informes locals de detecció no ha estat resolta, per tant es poden donar resultats falsos. Aquest treball presenta un protocol distribuït basat en signatures digitals i en funcions hash, i una anàlisi de les seves característiques de seguretat. El sistema permet determinar una decisió final de detecció de múltiples fonts d'una manera ràpida i segura

    When private set intersection meets big data : an efficient and scalable protocol

    Get PDF
    Large scale data processing brings new challenges to the design of privacy-preserving protocols: how to meet the increasing requirements of speed and throughput of modern applications, and how to scale up smoothly when data being protected is big. Efficiency and scalability become critical criteria for privacy preserving protocols in the age of Big Data. In this paper, we present a new Private Set Intersection (PSI) protocol that is extremely efficient and highly scalable compared with existing protocols. The protocol is based on a novel approach that we call oblivious Bloom intersection. It has linear complexity and relies mostly on efficient symmetric key operations. It has high scalability due to the fact that most operations can be parallelized easily. The protocol has two versions: a basic protocol and an enhanced protocol, the security of the two variants is analyzed and proved in the semi-honest model and the malicious model respectively. A prototype of the basic protocol has been built. We report the result of performance evaluation and compare it against the two previously fastest PSI protocols. Our protocol is orders of magnitude faster than these two protocols. To compute the intersection of two million-element sets, our protocol needs only 41 seconds (80-bit security) and 339 seconds (256-bit security) on moderate hardware in parallel mode

    Fully Distributed Cooperative Spectrum Sensing for Cognitive Radio Networks

    Get PDF
    Cognitive radio networks (CRN) sense spectrum occupancy and manage themselves to operate in unused bands without disturbing licensed users. The detection capability of a radio system can be enhanced if the sensing process is performed jointly by a group of nodes so that the effects of wireless fading and shadowing can be minimized. However, taking a collaborative approach poses new security threats to the system as nodes can report false sensing data to force a wrong decision. Providing security to the sensing process is also complex, as it usually involves introducing limitations to the CRN applications. The most common limitation is the need for a static trusted node that is able to authenticate and merge the reports of all CRN nodes. This paper overcomes this limitation by presenting a protocol that is suitable for fully distributed scenarios, where there is no static trusted node

    Multilevel Threshold Secret and Function Sharing based on the Chinese Remainder Theorem

    Get PDF
    A recent work of Harn and Fuyou presents the first multilevel (disjunctive) threshold secret sharing scheme based on the Chinese Remainder Theorem. In this work, we first show that the proposed method is not secure and also fails to work with a certain natural setting of the threshold values on compartments. We then propose a secure scheme that works for all threshold settings. In this scheme, we employ a refined version of Asmuth-Bloom secret sharing with a special and generic Asmuth-Bloom sequence called the {\it anchor sequence}. Based on this idea, we also propose the first multilevel conjunctive threshold secret sharing scheme based on the Chinese Remainder Theorem. Lastly, we discuss how the proposed schemes can be used for multilevel threshold function sharing by employing it in a threshold RSA cryptosystem as an example
    corecore