490 research outputs found

    Robust video transmission using reversible watermarking techniques

    Get PDF
    This paper presents a novel error-resilient strategy which employs a reversible watermarking technique to protect the H.264/AVC video content. The proposed scheme adopts reversible watermarking to embed an error detection codeword within every Macro block (MB). The watermark is then extracted at the decoder and used to detect the corrupted MBs to be concealed. The proposed scheme further manages to recover the original video content after watermark extraction, thus providing no loss in video quality. The simulation results demonstrate that the proposed approach provides a substantial gain of up to 2.6 dB in Peak Signal-to-Noise Ratio (PSNR) relative to the standard with a minimal increase in complexity.peer-reviewe

    Robust Video Transmission Using Reversible Watermarking Techniques

    Full text link

    Resilient video coding using difference expansion and histogram modification

    Get PDF
    Recent advances in multimedia technology have paved the way to the development of several applications, including digital TV broadcasting, mobile TV, mobile gaming and telemedicine. Nonetheless, real time multimedia services still provide challenges as reliable delivery of the content cannot be guaranteed. The video compression standards incorporate error resilient mechanisms to mitigate this effect. However, these methods assume a packet-loss scenario, where corrupted slices are dropped and concealed by the decoder. This paper presents the application of reversible watermarking techniques to facilitate the detection of corrupted macroblocks. A variable checksum is embedded within the coefficient levels and motion vectors, which is then used by the decoder to detect corrupted macroblocks which are concealed. The proposed method employs difference expansion to protect the level values while histogram modification was employed to protect the motion vectors. Unlike previous published work by the same author, this scheme does not need the transmission of side information to aid the recovery of the original level and motion vector values. Simulation results have indicated that significant gains in performance can be achieved over the H.264/AVC standard.peer-reviewe

    Digital rights management techniques for H.264 video

    Get PDF
    This work aims to present a number of low-complexity digital rights management (DRM) methodologies for the H.264 standard. Initially, requirements to enforce DRM are analyzed and understood. Based on these requirements, a framework is constructed which puts forth different possibilities that can be explored to satisfy the objective. To implement computationally efficient DRM methods, watermarking and content based copy detection are then chosen as the preferred methodologies. The first approach is based on robust watermarking which modifies the DC residuals of 4×4 macroblocks within I-frames. Robust watermarks are appropriate for content protection and proving ownership. Experimental results show that the technique exhibits encouraging rate-distortion (R-D) characteristics while at the same time being computationally efficient. The problem of content authentication is addressed with the help of two methodologies: irreversible and reversible watermarks. The first approach utilizes the highest frequency coefficient within 4×4 blocks of the I-frames after CAVLC en- tropy encoding to embed a watermark. The technique was found to be very effect- ive in detecting tampering. The second approach applies the difference expansion (DE) method on IPCM macroblocks within P-frames to embed a high-capacity reversible watermark. Experiments prove the technique to be not only fragile and reversible but also exhibiting minimal variation in its R-D characteristics. The final methodology adopted to enforce DRM for H.264 video is based on the concept of signature generation and matching. Specific types of macroblocks within each predefined region of an I-, B- and P-frame are counted at regular intervals in a video clip and an ordinal matrix is constructed based on their count. The matrix is considered to be the signature of that video clip and is matched with longer video sequences to detect copies within them. Simulation results show that the matching methodology is capable of not only detecting copies but also its location within a longer video sequence. Performance analysis depict acceptable false positive and false negative rates and encouraging receiver operating charac- teristics. Finally, the time taken to match and locate copies is significantly low which makes it ideal for use in broadcast and streaming applications

    Resilient video coding using difference expansion and histogram modification

    Full text link

    Histogram Based Data Cryptographic Technique with High Level Security

    Get PDF
    Histogram shifting plays a major role in reversible data hiding technique. By this shifting method the distortion is reduced and the embedding capacity may be increased. This proposed work uses, shifting and embedding function. The pixel elements of the original image are divided into two disjoint groups. The first group is used to carry the secret data and the second group adds some additional information which ensures the reversibility of data. The  parameter such as PSNR, embedding capacity and bit rate are used for comparisons of various image
    corecore